用户名: 密码: 验证码:
微纳纤丝的制备及其改良杨木胶合板的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国森林资源缺乏,随着我国经济快速发展和人民生活水平的提高,木材供需矛盾日益突出。大力发展人工速生林是缓减这一矛盾的有效措施,也是今后相当长时期内补充木材资源供应不足的重要形式。我国杨树资源丰富,速生杨树已经广泛用作人造板原料,有效缓减了我国木材供需矛盾。然而,速生杨木单板质地松软、密度低,限制了杨木胶合板的使用范围;此外,豆胶虽然价廉、量广、可再生、易于施胶操作且无毒无味试用期长,但普通大豆胶黏剂耐水性差、胶合强度低,而且耐腐蚀性差、易于生物降解,所以需要进行改性处理以期提高耐水性以及胶合强度。为此,本论文目的是通过采用杨木微纳纤丝改良豆胶和脲醛胶杨木胶合板的性能,使其能够适应更多的应用途径。
     本文选用杨木纸浆纤维为原料,研究了超声波破碎仪制备杨木微纳纤丝的工艺。并且,采用扫描电子显微镜、激光粒度分布仪和X射线衍射仪等现代分析仪器,对杨木微纳纤丝的形态、结晶度等性能进行了分析。
     运用傅里叶红外光谱仪FTIR、差示扫描量热仪DSC、动态热机械分析仪DMA等现代仪器分析方法,研究了杨木微纳纤丝对豆胶的影响。通过DMA分析微纳纤丝改性前后的豆胶,发现微纳纤丝显著改善了豆胶的抗弹性形变能力。通过脲醛树脂和三聚氰胺树脂胶粘剂固化反应的机理,分析杨木微纳纤丝对脲醛树脂和三聚氰胺树脂胶粘剂产生的作用。
     为了提高杨木胶合板的胶合性能,将杨木微纳纤丝作增强相,在豆胶中加入1%—5%,制造豆胶杨木胶合板,双面涂胶量为480 g/m2,热压温度160℃、热压时间80 s/mm(板厚)、热压压力1.6 MPa。试验结果表明:在豆胶中加入3%杨木微纳纤丝时,豆胶杨木胶合板的胶合强度最高,比未添加微纳纤丝的豆胶杨木胶合板的胶合强度提高了56%。将杨木微纳纤丝作增强相,在脲醛胶中加入1%-10%,制造脲醛胶杨木胶合板,双面涂胶量为280g/m2,热压温度115℃、热压时间75s/mm(板厚)、热压压力1.2 MPa。试验结果表明:在脲醛胶中加入1%-10%微纳纤丝,脲醛胶杨木胶合板的胶合强度提高了35%。
     为了提高杨木胶合板的表面性能,将杨木微纳纤丝作增强相,在三聚氰胺树脂中加入1%—5%,对杨木胶合板表面进行处理。试验结果表明:在三聚氰胺树脂中添加了3%-5%微纳纤丝后,染色杨木胶合板的色牢度有明显改善,色牢度增加了20%;在三聚氰胺树脂中添加微纳纤丝处理杨木胶合板后,可以不同程度的提高杨木胶合板的表面耐磨性能,其中,添加1%微纳纤丝三聚氰胺树脂处理的杨木胶合板表面耐磨性能最好。
China is lack of forestry resources. With rapid development of economy and enhancement of civilian living condition,the contradiction between need and supply has become prominent. Making full development of fast-grown forest is a efficient measure to deduce the contrary and a important form to resolve the shortage of wood sources. Our country is rich in poplar,which can be used as the raw material of wood-based panel. It can relieve the contrary between need and supply effectively.However,fast-grown poplar is soft and of low density, limiting the use scope of poplar plywood. Besides, although soybean glue has many advantages such as cheap, abundant, recyclable, facilitative, harmless and lasting, it can't reach the standard of GBⅡplywood as its bad waterproof capacity, low bonding strength and easy-to-be-decomposed character. As a result, the purpose of this paper is to improve the properties of poplar soybean adhesive plywood and UF resin plywood by micro/macro fibrils, making them available to more applications.
     In this paper,poplar pulp is processed to nano-fiber with ultrasonic crusher. Furthermore, the properties of morphology,molecular weight and crystal ratio were analyzed with electron microscope,granularity distributing machine and X-ray diffractor.
     FTIR,DSC,DMA is applied to analyze the influence of poplar macro/nano fibrils on soybean glue. The DMA figures of soybean glue illustrates that poplar macro/nano fibrils improve the elastic variety resistence of soybean glue.The curing reaction mechanism of UF and MF resin is analyzed to presume the influence of poplar macro/nano fibrils on UF and MF adhesive.
     To improve the adhesive strength of poplar plywood,add 1%-5% nano-fibre to soybean glue poplar plywood separately as reinforcement,and then spread glue on veneer on the amount of 480 g/m2. Hot press in the condition of 160℃,80 s/mm and 1.6 Mpa. It explicates soybean glue plywood with 3% nano-fibre addition performs highest adhesive strength,increasing by 56% in the strength than soybean glue plywood without nano-fibre. Add 1%-10% nano-fibre of spreading glue amount to urea-formaldehyde resin plywood to improve its adhesive properties. The parameter is as following:double-face spreading amount 280 g/m2,pressure 1.2Mpa,temperature 110 -120C,time 1-1.5min/mm. The adhesive strength raise with the increase of nano-fibre amount,and performs better.
     Add 1%-5% nano-fibre of spreading glue amount to MF adhesive,which is spread on the surface of plywood to improve the exterior performance of poplar plywood. Brushed MF with 3% and 5% nano-fibre,the color firmness of the veneer is improved prominently,20% higher than veneer brushed with blank MF. Adding nano-fiber can enhance surface abrading persistence distinctively,while 1% nano-fibre addition performs best.
引文
[1]Dingguo Zhou, the development of utilizing agricultural straws in China[J].
    [2]邵明坤.杨木胶合板质次之因及改进措施[J].临沂师专学报,1999,21(3):17-19
    [3]刘艳萍,陈志林,曾辉.杨木特性对其胶合板质量的影响及对策[J].河南林业科技,2006,26(1):29-31
    [4]孙芳利,段新芳,冯得君.木材染色的研究概况及发展趋势[J].西北林学院学报,2003,18(3):96-98
    [5]陈玉和,陆仁书.木材染色进展[J].东北林业大学学报,2002,30(2):84-86
    [6]段新芳.木材颜色调控技术[M].中国建材工业出版社.2002
    [7]张洋,安霞,周兆兵,贾翀.速生杨木染色效果的色差分析[J].林业科技开发,2007,21(1):25-27
    [8]闫超,时兰翠,崔立东,张晶,赵丹.速生杨木染色-材色变化规律研究初探[J].林业机械与木工设备,2008,36(11):30-32
    [9]邵成峰,叶喜,李兴贵.酸性染料对杨木单板染色工艺的影响[J].西南林学院学报,2009,29(1):86-88
    [10]刘艳萍,章昕,曾辉,张洋.杨木单板染色工艺对颜色坚牢度的影响[J].木材工业,2008,22(5):5-7
    [11]陈桂华.杨木单板染色工艺试验[J].林业科技开发,2000,14(6):38-39
    [12]周宇王金林.杨木单板染色工艺与表面材色的关系[]].东北林业大学学报,2006,34(5):51-54
    [13]周宇,王金林.杨木单板染色工艺与染料染着量的关系[J].木材工业,2006,20(4):7-9
    [14]Hettiarachchy N S, Kalapathy U, Myers D J. Alkali-Modified Soy Protein with Improved Adhesive and Hydrophobic Properties[J]. JAOCS,1995,72(12):1461-1464
    [15]Sun X Z, Bian K. Shear Strength and Water Resistance of Modified Soy Protein Adhesives [J]. JAOCS,1999,76(8):977-980
    [16]Huang W N, Sun X Z. Adhesive Properties of Soy Proteins Modified by Urea and Guanidine Hydrochloride[J]. JAOCS,2000,77:101-104
    [17]Huang W N, Sun X Z. Adhesive properties of soy proteins modified by sodium dodecyl sulfate and soudium dodecylbenzene sulfonate[J]. JAOCS,2000,77(7):705-708
    [18]Zhong Z K, Sun X Z, Fang X H, et al. Adhesive strength of guanidine hydrochloride-modified soy protein for fiberboard application[J]. International Journal of Adhesion & Adhesives, 2002,22:267-272
    [19]Cheng E Z, Sun X Z, Greggory S, et al. Adhesive Properties of Modified Soybean Flour in Wheat Straw Particleboard[J]. Composites:Part A:Applied Science and Manufacturing, 2004,35(3):297-302
    [20]Li K, Geng X, J. Simonsen, et al. Novel wood adhesives from condensed tannins and polyethylenimine[J]. International Journal of Adhesion & Adhesives,2004(24):327-333
    [21]韩书广,吴羽飞,殷苏州.胶合板用改性脲醛树脂的调制与应用[J].木材工业,200620(5):3941
    [22]陈桂华,余运通.杨木胶合板模板工艺研究[J].林产工业,2002,29(3):18-20
    [23]朱林江.贴面胶合板生产用纳米材料掩蔽剂[J].产品与开发,2004:24-26
    [24]杨庆,行淑敏,邱增处.表面强化杨木胶合板模板的研究[J].林产工业,2005,32(5):31-33
    [25]张道伟,李江涛.杨木单板的改性处理与胶合板生产[J].林业科技开发,1998,2:50-51
    [26]CHENG Qing-zheng ,WANG Si-qun, ZHOU Ding-guo, RIAL S Tim, ZHANG Yang. Lyocell-derived Cellulose Fibril and Its Biodegradable Nanocomposite[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2007,31(4):3-7(13):4839-4844
    [27]Chakraborty A,Sain M,Kort schot M. Cellulose microfibrils :a novel method of preparation using high shear refining and cryocrushing[J]. Holzforschung,2005,59 (1):102-107.
    [28]Taniguchi T. Microfibrillation of natural fibrous materials[J].J Soc MatSci Japan,1996,45 (4):472-473.
    [29]Yano H,Sugiyama J,Nakagaito A N,et al. Optically transparent composites reinforced with networks of bacterial nanofibers[J]. Advanced Materials,2005,17 (2):153-155.(13)唐杰斌,赵传山.纤维素微纤丝的制备及应用[J].纸和造纸,2008,27(5):30-32
    [30]Samir M, Alloin F,Sanchez J Y, etal. Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers[J]. Macro-molecules,2004,37
    [31]程庆正,王思群,周定国,RIALS Tim,张洋Lyocell纤丝及其可生物分解的纳米复合材料研究[J].南京林业大学大学学报,2007,31(4):22-26
    [32]吴燕,周定国,王思群,张洋.稻秸微/纳米增强聚丙烯纳米复合材料的研究[J].林产工业,2009,36(2):21-33
    [33]夏松华,李黎,李建.纳米Ti02改性脲醛树脂性能研究[J].研究报告与专论,2008,7:21-23
    [34]林巧佳.纳米二氧化硅改性脲醛树脂的应用及机理研究[J].福建林学院学报,2005,25(2):97-102
    [35]时尽书,李建章,周文瑞.脲醛树脂与纳米二氧化硅复合改善木材性能的研究[J].北京林业大学学报,2006,28(2):123-128
    [36]张久荣吴玉章.人工林杨木利用现状及前景[J].中国林业产业,2006:24-26
    [37]马岩.纳微米科学与技术在木材工业的应用前景展望[J].林业科学,2001,37(6):109-112
    [38]李坚.木材波谱学[M].北京:科学出版社,2003.
    [39]朱利平,顾丽莉,张彦民.低毒耐水脲醛树脂的合成[J].林产工业,2003,30(4):25-28
    [40]邓艳文,傅和青,张小平,黄洪,陈焕钦.木材用脲醛树脂胶粘剂研究进展[J].2005,14(11):36-48
    [41]范东斌,李建章,卢振雷,周文瑞,毛安.不同固化剂下低摩尔比脉醛树脂热行为及胶接胶合板性能[J].中国胶黏剂,2006,15(12):1-5
    [42]李兰亭,胶粘剂与涂料[M],中国林业出版社,1992:23-30
    [43]刘若工.应用DSC研究UF树脂与氯化铵固化反应机理[J],木材工业,1989,3(3):8- 13
    [44]张洋,华毓坤.用DSC法研究麦秸人造板用胶的热反应特征[J],南京林业大学学报,2000,24(5):17-20
    [45]Rakesh Kumar, Veena Choudhary, Saroj Mishra, I.K. Varma,Bo Mattiason. Adhesives and plastics based on soy protein products[J]. Industrial Crops and Products 2002,16:155-172
    [46]Wang Y, Sun XS, Wang D. Performance of soy protein adhesive enhanced by esterification[J]. Transactions of the asabe,2666,49(3):713-719
    [47]Jian Huang, Kaichang Li. A New Soy Flour-Based Adhesive for Making Interior Type II Plywood[J]. J Am Oil Chem Soc,2008 85:63-70
    [48]N.S. Hettiarachchy, U. Kalapathy, and D.J. Myers. Alkali-Modified Soy Protein with Improved Adhesive and Hydrophobic Properties[J]. JAOCS, Vol.72, no.12 (1995):1461-1464
    [49]沈淑娟,方绮云.波谱分析的基本原理及应用[M].北京:高等教育出版社,1988.
    [50]王兆民.红外光谱学理论与实践[M].北京:兵器工业出版社,1993.
    [51]梅超群,樊永明,江进学,张洪利,陈瑶.核磁共振波谱在木材改性中的应用[J].应用化工,2009,38(6):880-883
    [52]张云.核磁共振技术的历史及应用[J]science & technology information,2010,15:116-118
    [53]仲明礼.核磁共振实验测量方法的分析[J].物理实验.2009,29(5):34-36
    [54]JASSE 9. Structu ral Glued Laminat ed T imber[S]. Notification NO.992, Ministry of Agriculture, Forestry and Fisheries dated Jul 20,2000.
    [55]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [56]刘振海.热分析导论[M].北京:化学工业出版社,1991.
    [57]周平华,许乾藯.热分析在高分子材料中的应用[J].上海塑料,2004,3(1):36-40.
    [58]赵仁杰,陈哲,张建辉.中国竹材人造板的科技创新历程与展望[J].人造板通讯,2004,11(3):9-11.
    [59]程瑞香.动态热机械分析在木材加工行业的应用[J].木材工业,2005,19(4):28-30
    [60]唐宏辉,陈鸿斌,王正.结构用竹集成材制造工艺技术简介[J].人造板通讯,2004,11(9):16□19.
    [61]潘祖仁.高分子化学[M].北京:化学工业出版社,1986.
    [62]Chehidi,I;Tetrahedron Lett.1989,30,3167
    [63]王卫红.三聚氰胺缩聚产物MF树脂的应用研究[J].铜陵职业技术学院学报,2010,3:51-52
    [64]刘艳萍,张洋,李艳,袁少飞.改性三聚氰胺树脂处理杨木密实化的研究[J].西北林学院学报,2009,24(3):156-158
    [65]宫克.三聚氰胺甲醛树脂合成与性能的研究[J].1996,4:25-27
    [66]李旭影,刘鸿雁.三聚氰胺树脂合成技术[J].黑龙江生态工程职业学院学报,2008,21(6):37-38
    [67]刘艳萍,章昕,曾辉,张洋.杨木单板染色工艺对颜色坚牢度的影响[J].木材工业,2008,,2(5)5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700