用户名: 密码: 验证码:
甘蓝型油菜A7-千粒重主效QTL的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题组借助分子标记和QTL作图等生物学技术在9个环境中利用282个DH群体对甘蓝型油菜的19对染色体进行了千粒重的初定位,其中有7个环境都一致地在第7号染色体(A7)上相同的区域检测到一个效应值较大的QTL,这个QTL的LOD值范围大致在3.35到16.75之间,其遗传变异的贡献率达到4.90%~17.90%,加性效应在0.071-0.205之间,平均加性效应为0.148g;其QTL的标记区间在EST12a到ZAAS864之间,遗传距离有40.3cM。A7-千粒重QTL的初定位结果,为后续的精细定位和图位克隆打下了良好的基础。
     本研究在此基础上进行,通过对A7-目标QTL区间标记辅助选育,发展含供体目标基因组片段的近等基因系BC3F1/BC3F2和BC4F1/BC4F2世代,分别利用1138株BC3F1和594株BC4F1单株群体进行标记基因型分析,并用其相应单株以及自交后代株系(BC3F2和BC4F2)群体进行两重复的田间试验和千粒重表型测定。并借助白菜基因组第7连锁群的序列信息以及与拟南芥基因序列进行同源比对针对A7-千粒重QTL区间发展位置特异性标记。从而对A7-千粒重QTL进行确认和精细定位,主要结果如下:
     1.A7-目标QTL区间标记加密
     根据甘蓝型油菜A7-千粒重QTL的初定位结果,借助白菜A7连锁群基因组序列信息针对甘蓝型油菜A7-千粒重主效QTL区域发展了位置特异性标记上百个,其中定位上了44个。标记从原来的19个增加到现在的63个,并使其标记间平均距离由2.12cM减小到0.60cM。
     2.A7-目标QTL的确认
     利用1138株BC3F1世代的单株基因型和相应的自交后代BC3F2株系表现型对甘蓝型油菜A7-千粒重QTL进行确认和缩小区间。通过关联分析以及近等替换系间的比对分析,发现在A7-千粒重QTL区间内大粒和小粒等位基因间确实存在显著的差异(P=0.001),其均值差为0.190g;QTL区间由初定位的40.3cM缩小到9.0cM,位于ESPSC2和ZAAS864之间。
     3.A7-目标QTL的精细定位
     利用594株BC4F1世代的单株和BC4F2株系对甘蓝型油菜A7-千粒重主效QTL进行精细定位。通过BC4F1世代单株基因型和BC4F2株系表型的关联分析以及其近等基因系间的比对分析之后,将A7-千粒重QTL区间进一步缩小到了sr0282R和ZAAS864两标记之间,其遗传距离为6.9cM。6.9cM的目标区域内含纯合大粒等位基因(Sollux)片段的株系对千粒重的贡献相对于含纯合小粒等位基因(Gaoyou)片段的株系平均要高0.231g,差异达到极显著(P=0.009),说明A7上控制油菜千粒重的QTL很可能就位于这个6.9cM的QTL区间内。但是目前这个QTL区间的遗传距离还比较大,所以需要进一步加密区间标记以及培育更高世代的回交群体,才能进一步地缩小目标区间的遗传距离。
     本结果表明在A7-千粒重QTL目标区间内,当中国品种'Gaoyou"中控制小粒等位基因被欧洲品种'Sollux"中控制大粒等位基因纯合替代时,可显著提高千粒重约0.231g,所以有必要对A7-目标区间作更进一步的精细定位和图位克隆控制该QTL的关键基因。
Based on the initial QTL mapping for 1000-seed weight using SG-DH population (282 lines) over 9 environments, one major QTL located on linkage group 7 (A7) was selected for further fine mapping. This QTL was stably detected in 7 of 9 environments with LOD value from 3.35 to 16.75 and explained the phenotypic variation in population from 4.90% to 17.90%. This QTL showed an average additive effect of 0.148g and was flanked by markers EST12a and ZAAS864 (40.3cM).
     In present study, the major QTL for seed weight on A7 was validated and further fined mapped through the following procedures.1) QTL near isogonics lines including BC3F1/BC3F2 and BC4F1/BC4F2 generations covering target genomic region were developed by marker-assistant backcross; 2) 1138 and 594 single plants from BC3F1 and BC4F1 populations were individually isolated and subsequently analyzed by the markers within QTL region to get marker genotypes. For increasing the marker density, the positional specific markers were developed by using the sequence information from A7 of Brassica rape; 3) the corresponding selffing progenies of BC3F2 and BC4F2 families were employed for field trials with replications to obtain the trait phenotypes. The main results were as follows:
     1. Increasing markers in the target QTL interval
     Based on the initial QTL mapping for 1000-seed weight on A7, hundreds of positional specific markers were developed in the QTL target interval by using the sequences information of A7 in Brassica rape. Of them,44 markers could be mapped within the QTL region and therefore, greatly increased the marker density from 19 to 63 markers with the average distance between two markers from 2.12cM to 0.60cM.
     2. The validation of the target QTL on A7
     The QTL for 1000-seed weight on A7 was validated by using the marker genotypes from BC3F1 single plants (n=1138) and trait phenotypes from their corresponding selfing progenies BC3F2. The results showed clearly linkages between three marker genotypes and trait phenotypes in each of marker loci within QTL region. Further, a significant difference of 0.190 g (P=0.001) for 1000-seed weight between homozygous BC3F2 sister sub-NILs carrying "Sollux" fragment (n=101, 3.169g) and NILs containing "Gaoyou" segment (n=85,2.979g) in the target region were observed. By comparison analysis among near isogonics lines in this step, the QTL region was narrowed from 40.cM to 9.0cM
     3. The further fine mapping of A7-QTL for seed weight
     The further fine mapping for A7-QTL of 1000-seed weight was carried out by using the BC4F1/BC4F2 plants/families. Marker genotypes were analyzed with BC4F1 single plants (n=594), and trait phenotypes were obtained from their corresponding selfing progenies BC4F2. The same strategy as used in the populations of BC3F1/BC3F2 was adopted to conduct the linkage and comparative analysis. The results further narrowed the QTL from 9.0cM to 6.9cM region and fixed it between markers sR0282R and ZAAS864. Notably, the larger difference with 0.231g (P=0.009) for 1000-seed weight between two homologous genotypes of NILs carrying "Sollux" fragment (n=44,3.234g) and NILs containing "Gaoyou" segment (n=51,3.003g) in the 6.9cM region than identified in populations of BC3F1/BC3F2 were observed. This shows a trend when the genetic background are more identical between two QTL-NILs, the additive effect of the QTL might increase and therefore to further indicate the potential for map-based cloning and for breeding purpose of this QTL.
引文
[1]中国饲料工业信息网.世界主要油料作物产销现状及形势分析[C].中国,天琪期货,2003
    [2]傅廷栋,涂金星.油菜杂种优势研究利用的现状和展望[J].中国油料作物学报,2008:1-5
    [3]傅廷栋.油菜杂种优势研究利用的现状和思考[A].中国油料作物学报,2008:1-5
    [4]人民网-科技频道.我国科学家领衔破译白菜甘蓝油菜全基因组遗传密码[C].北京,蒋建科,2009
    [5]Zhao J Y,Becker H C et al.Oil content in a European×Chinese Rapeseed Population:QTL with additive and epistatic effects and their genotype-environment interactions[J].Crop Sci,2005,45:51-59
    [6]白晶,张月学,杨冬鹤等.几种重要的分子标记原理及RAPD应用[J].哈尔滨师范大学自然科学学报,2004,20(5):89-91
    [7]龚鹏,杨效文,谭声江等.分子遗传标记技术及其在昆虫科学中的应用[J].昆虫知识,2001,38(2):86-91
    [8]刘旭东,杨建海.新的遗传标记技术-RAPD及其在遗传分析中的应用[J].海洋科学,1996,4:45-47
    [9]李娜,焦浈,秦广雍.DNA分子标记技术及其在小麦育种及遗传研究中的应用[J].核农学报,2005,19(3):322-327
    [10]骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展[J].生物化学与生物物理进展,2001,28(4):494-497
    [11]盖树鹏,孟祥栋.分子标记技术及其在作物育种中的应用[J].农业生物技术科学,2003,19(6):12-15
    [12]徐丽芳,陈吉炎,罗光明.分子标记技术及其在植物育种中的应用[J].食品与药品,2007,9(10):43-46
    [13]Tams S H, Melchinger A E, Bauer E. Genetic similarity among European winter triticale elite germplasms assessed with AFLP and comparisons with SSR and pedigree data[J]. Plant Breeding,2005,124:154-160
    [14]李磊,王沛政,秦利等.陆地棉分子遗传图谱的构建[J].新疆农业科学,2006,43(4):306-309.
    [15]Hittalmani S, Foolad M R, Rodriquez R L, et al.Development of PCR based marker to identify rice blast resistance gene,Pi-2(t)in a segregating population[J]. Theor Appl Genet.,1995,91:9-14
    [16]李希臣,雷勃钧,卢翠华等.外源DNA导入的大豆品种“黑豆101”APD初探[J].大豆科学,1999,16(3):230-235
    [17]刘琳,毛凯,干友民等.分子标记技术在植物遗传育种中的应用[J].四川草原前沿,2003,4
    [18]Rajeev K. Varshney, Andreas Graner et al.Genomics-assisted breeding for crop improvement[J]. Trends in Plant Science.2005,10(12):621-630
    [19]朱文银,王才林.作物染色体片段置换系研究进展[J].江苏农业学报,2008,24(6):963-968
    [20]徐新福,唐章林,李加纳等.基于加性-显性效应的杂种表现分子标记预测模型[J].中国农业科学,2008,41(10):2963-2972
    [21]庄杰云,樊叶杨,吴建利等.超显性效应对水稻杂种优势的重要作用[J].中国科学,2001,31(2):106-113
    [22]徐绍忠,杨德,陈升位.云南粳稻育成品种(系)主要数量性状遗传参数分析[J].云南农业大学学报,2000,15(4):301-304
    [23]刘垂玗.作物数量性状的多元遗传分析[M].北京农业出版社,1991,159-105.
    [24]戴君惕,杨德.相关遗传力及其在育种上的应用[J].遗传学报,1983,10(5):375-383.
    [25]李庆林,李光太,郭贵珍等.水稻产量性状的相关及通径分析[J].吉林农业科学,1990,(4):7-10.
    [26]马勇,邬信康,刑桂玲等.水稻数量性状的相关和单株产量的选择指数[J].吉林农业科学,1993,(4):21-24
    [27]王景川.数量遗传学方法在螺旋藻p-胡萝卜素代谢工程中的应用[D].天津商业大学硕士论文,2009.
    [28]张书芬,傅廷栋,朱家成等.甘蓝型油菜产量及其构成因素的QTL定位与分析[J].作物学报,2006,32(8):1135-1142.
    [29]梅德圣,张壵,李云昌等.油菜油分、蛋白质和硫苷含量相关性分析及QTL定位[J].植物学报,2009,44(5):536-545
    [30]刘勋甲,尹艳,.郑用琏.分子标记在农作物遗传育种中的运用及原理[J].湖北农业科学,1998,3
    [31]闫华超,高岚,李桂兰.分子标记技术的发展及应用[J].2006,41(2):17-19
    [32]Li Y Y, Shen J X, Wang T H,et al. QTL analysis of yield related traits and their association with functional markers in B rassica napus L.[J].Aust ralian Journal of Agricultural Research,2007,58 (8):759-766
    [33]Zhao JY, Heiko C, Becker,et al. Conditional QTL mapping of oil content in rapeseed with respect to protein content andt raits related to plant development and grain yield [J]. Theoretical and Applied Genetics,2006,113:33-38.
    [34]Quijada P A, Ivan J,Maureira, et al.Confirmation of QTL controlling seed yield in spring canola(Brassica napus L.)hybrids[J].MolecularBreeding,2004,13:193-200.
    [35]易斌,陈伟,马朝芝等.甘蓝型油菜产量及相关性状QTL分析[J].作物学报,2006,32(5):6762682.
    [36]Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988,335:721-726.
    [37]戚昌瀚,刘桃菊,唐建军等.作物模拟与QTL定位的互补作用及其应用[J].中国农业科学,2004,37(9):1390-1395
    [38]张小明,叶胜海,鲍根良等.作物数量性状发育遗传的研究进展[J].浙江农业学报,2003,15(4):2682272.
    [39]丁效华.作物数量性状基因图位克隆研究进展[J].植物遗传资源学报,2005,6(4):4642468.
    [40]王俊生,董育红,张改生等.油菜数量性状QTL定位研究进展[J].西北农林科技大学学报,2008,36(11)
    [41]But ruille D V, Guries R P, Osborn T C. Increasing yield of spring oilseed rape hybrids (B rassica napus L.) through introgression of winter germplasm [J]. Crop Science,1999,39:1491-1496.
    [42]utruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative t rait s loci in populations of inbred back cross lines of B rassica napus L. [J]. Genetics,1999,153:949-964.
    [43]Quijada P A, Ivan J, Maureira, et al. Confirmation of QTL cont rolling seed yield in spring canola (Brassica napus L.) hybrids [J].Molecular Breeding, 2004,13:193-200
    [44]Quijada P A, Udall J A,Lambert B, et al. Quantitative t rait analysis of seed yield and ot her complex t rait s in hybrid spring rapeseed (Brassica napus L.): identification of genomic regions from winter germplasm [J]. Theoretical and Applied Genetics,2006,113 (3):549-561
    [45]Zou J, Gong H H, Fu D H, et al. Increasing of heterosis betwenn subgenomic by polymerizing interspecific genetic components (B. rapa and B. carinata) in new subgenomic variety of oilseed rape [C]. Sustainable crops production Genetics and breeding. Wuhan:Science Press USA Inc,2007,5
    [46]刘刚,鲁绍雄.利用连锁不平衡进行QTL精细定位的策略[J].家畜生态学报,2006,27(6):197-201
    [47]罗泽伟,张容梅.人类复杂疾病高解析度基因定位的理论策略[J].科学通报,1999,44(6):572-579.
    [48]鲁立刚,金深逊,张建英等.同源相同(IBD)定位在QTL精细定位中的研究进展[J].家畜生态学报,2010,31(2):83-86
    [49]Zhang Y M. Advances on methods of mapping QTL in plant[J]. Chinese Science Bulletin,2006,51(23):2809-2818.
    [50]Davasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping[J]. Genetics,1995,141:1199-1207.
    [51]Luo Z W, Wu C-I, Kearsey M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes[J]. Genetics,2002,161:915-929.
    [52]Zhang Y-M, Mao Y C, Xie C Q, et al. Mapping QTL using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.) [J]. Genetics,2005,169(4):2267-2275.
    [53]Lin Y R, Schertz K F, Paterson A H. Comparative analysis of QTLs affecting plants height and maturity across the Poaceae, in reference to an interspecific sorghum population[J]. Genetics,1995,141:391-411.
    [54]Bodmer W F. Human genetics:the molecular challenge[J]. Cold Spring Harbor Symposia on Quantitative Biology. Ⅱ,1986:1-13.
    [55]Wu R L, Zeng Z-B. Joint linkage and linkage disequilibrium mapping in natural populations[J]. Genetics,2001,157:899-909.
    [56]Zhang Y M. Advances on methods of mapping QTL in plant[J].Chinese Science Bulletin,2006,51(23):2809-2818.
    [57]Peleman J D, Wye C, Zethof J, et al. Quantitative trait loci (QTL) isogenic recombinant analysis:a method for high-resolution mapping of QTL within a single population[J]. Genetics,2005,171:1341-1352.
    [58]Li J Z, Huang X Q, Heinrichs F, et al. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley[J].Genome,2006,49(5):454-466.
    [59]The Complex trait consortium. The nature and identification of quantitative trait loci:A community's view[J].Nature Reviews Genetics,2003.4:911-916.
    [60]李梦,林飞,黄菊等.QTL精细定位影响因素的数学模型[J].中国农业科学2008,41(2):340-346
    [61]Glazier M A,Nadeau H J,Aitman J T. Finding genes that underlie complex traits[J].Science,2002,298:2345-2349
    [62]刘立峰,李自超,穆平.基于作物QTL的分子育种研究进展[J].分子植物育种,2004,2(1):77-83
    [63]Alpert K B, and Tanksley S D.Highresolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato[J]. Proc.Natl. Acad. Scill, USA,199,93:15503-15507
    [64]Yano M, and Sasaki T,1997. Genetic and molecular dissection of quantitative traits in rice[J]. Plant Moll Bioll,35:145-153
    [65]丁效华.作物数量性状基因图位克隆研究进展[J].植物遗传资源学报,2005,6(4):464-468
    [66]Wang S, Basten C J, et al. Windows QTL Cartographer 2.0, Department of Statistics[J]. North Car,2006, Raleigh, NC
    [67]Grant I, Beversdorf W D. Heterosis and combining ability estimates inspring rape(Brasica napus)[J].Canadian Journal of Genetics and Cytology,1985, 27:472-478
    [68]Lefort, Buson, Dattee Y.Genetic study of some agronomic characters in winter oilseed rape(Brassica napus). I [J].HeterosislAgronomy,1982,2(4):315-321
    [69]Lefort, Buson,Dattee Y.Genetic study of some agronomic characters in winter oilseed rape(Brassican apus). Ⅱ [J].Genetic parameters Agronomy,1982,2(4): 323-332
    [70]Brandle J, McVetty P B E. Genotype xenvironment interaction and stability analysis of seed yield of oilseed rape grown in Manitoba[J].Canadian Journal of Plant Sciences,1988,68:381-388
    [71]Brandle J, McVetty P B E. Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines[J].Crop Sciences,198,29:1191-1195
    [72]戚存扣,盖钧镒,傅寿仲等.甘蓝型油菜(Brassica napus L1)千粒重性状遗传体系分析[J].作物学报,2004,30(12):1274-1277
    [73]郦美娟,顾菊生.油菜农艺性状的基因效应分析[J].浙江农业学报,1992,4(4):149-153
    [74]危文亮.甘蓝型油菜长角果变异体的遗传研究[J].遗传.2000,22(2):93-95
    [75]张书芬.甘蓝型油菜农艺及品质性状杂种优势和遗传分析[D].华中农业大学博士论文,2005
    [76]Zhao J Y,Becker H C, et al. Conditional QTLs mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield[J].Theor Appl Genet,2006,113:33-38
    [77]Butruille D V, Guries R P et al. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines in Brassica napus L[J]. Genetics,1999,153:949-964
    [78]Li J,Thomson, M.& McCouch,S.R. Fine mapping of a grain weight quantitative trait locus in the pericentromeric region of rice chromosome 3[J].Genetics,2004,168:2187-2195
    [79]Ramchiary N, Padmaja K L, Sharma S, et al., Mapping of yield influencing QTL in Brassica juncea:implications for br eeding of a major oilseed crop of dryland areas[J]. Theor Appl Genet,2007,115:807-817.
    [80]王峰,官春云.甘蓝型油菜遗传图谱的构建及单株产量构成因素的QTL分析[J].遗传,2010,32(3):271-277
    [81]李佳,沈斌章等.一种有效提取油菜叶片总DNA的方法[J].华中农业大学学报,1994,13:521-523
    [82]张文彤,闫洁等.SPSS统计分析基础教程[M].高等教育出版社,2004,9
    [83]Lincoln, S E, Daly M J, Lander E S. Constructing genetic linkage maps with MAPMARKER/EXP 3.0. A tutorial and reference manual. Whitehead Institute for Biomedical Research,1993. Cambridge, MA.
    [84]刘仁虎,孟金陵.MapDraw在Excel中绘制遗传连锁图的宏[J].遗传,2003,25:317-321
    [85]Noumi T, Mosher M E, Natori S, et al. A phenylalanine for serine substitution in the beta subunit of Escherichia coli F1-ATPase affects dependence of its activity on divalent cations [J].J Biol Chem,1984,259(16):10071-10075
    [86]Orita M, Iwahana H, Kanazawa H, et al.Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms [J].Proc Natl Aead Sei USA,1989,(86):2766-2770
    [87]Easylabs单链构象多态性SSCP的原理与应用[OL]. www.easylabs.com.cn, 2009
    [88]Hayashi K, V andllD W. How sensit ive is PCR-SSCP? [J]. HumanM utat i on, 1993,2 (5):338
    [89]Nataraj A J, O livos Glander I, Kusukawa N, et al. Singlest rand conformation polymorphism and heterodup lex analysis for gel-based mutation detection.Elect-rophoresis,1999,20 (6):1177
    [90]丁建松,曹毅,童建.PCR-SSCP研究进展[J].辐射防护通讯,2004,24(5):27-31
    [91]赵爽,潘秋丽,姜宫凌侠PCR-SSCP的效果分析[J].生物技术通报,2010,4:132-]55
    [92]邓振伟,于萍,陈玲等.SPSS软件在正交试验设计结果分析中的应用[J].2009,(5):15-17
    [93]林鸿宣,庄杰云,钱惠荣等.水稻株高及其构成因素数量性状基因座位的分子标记定位[J].作物学报,1996,22(3):257-263
    [94]徐爱遐,黄继英,王绥璋.甘蓝型油菜种质及后代角粒数和千粒重的变化研究[J].陕西农业科学,1993(6)
    [95]Paterson A H, Lander Eric S, Hewitt John D, Paterson S, Lincoin S E, Tanksley S D. Resolution of quantitative factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335(20):721-72
    [96]Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.):1. identification of genomic regions from winter germplasm[J]. Theor Appl Genet,2006,113:549-561
    [97]李媛媛.利用功能分子标记分析甘蓝型油菜产量相关性状QTLs及其杂种优势遗传基础[D].华中农业大学博士论文,2006
    [98]Chuchuan Fan, Guangqin Cai, Jie Qin et al. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus[J]. Theor Appl Genet,2010,121:1289-1301
    [99]Xiaobo Xie, Mihee Song, Fengxue Jin,et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon[J].Theor Appl Genet,2006,113:885-894

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700