桉树促生菌的16S rDNA分析及接种造林试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物促生菌是指能通过各种直接或间接的作用有利于植物生长或促进植物生长的细菌,即PGPR(plant growth-promoting rhizobacteria),主要有固氮菌、解磷菌、解钾菌。前期从桉树、罗汉松、厚荚相思等林地分离、纯化到若干优良固氮菌、解磷菌、解钾菌。本研究将供试菌株进行了16S rDNA全序列分子分类学鉴定,并采用随机区组试验设计方法进行了桉树接种促生菌的苗期及后续造林试验,筛选出了一批促生效果较优的菌株,为桉树可持续林业的发展及大而积接种促生菌造林提供现实依据及指导意见。
     参与16S rDNA全序列分析的14个菌株在NCBI进行BLAST后,可以初步将其归于4个不同的属:不动杆菌属(Acinetobacter)有Nd、9K、4K、4Kv、14K 5个菌株;芽孢杆菌属(Bacillus)有N6、Nc、N1 3个菌株;葡萄球菌属(Staphylococcus)有K1、40K、0K、P、P1 5个菌株;厌氧球菌属(Anaerococcus)的菌株最少,仅有1株N5。
     综合苗期与造林试验结果,14个供试菌株接种广林9号无性系效果较优的为N1、N6、9K、NC、40K、14K这6个菌株。造林期各接种处理相对于对照组树高、地径增长率分别达13.95%-32.21%、32.49%-54.94%。对于筛选出的6个优良促生菌,进行了固氮菌与解钾菌之间促生效果差异的比较, t检验结果表明固氮菌接种促生效果要显著优于解钾菌。
     从在南宁市蔬菜研究基地接种8个不同固氮菌、解磷菌组合菌株于广林9号无性系的苗期及造林试验来看,接种促生效果相对较优的为N1+P、N1+L2+P、L2+P、4Y+L2+P这4个组合菌株。组合菌株N1+P、N1+L2+P、L2+P、4Y+P、4Y+L2+P的接种促生效果要显著优于单一菌株P。且采自桉树林地的组合菌株N1+P接种处理后苗高(树高)均要显著高于采自非桉树(罗汉松)林地的组合菌株处理4Y+L2。
     从在广西林科院接种8个不同固氮菌于广林9号无性系的苗期及造林试验中,研究表明接种促生效果较优的为D7+4Y、H6+L2、H6、D7、L2+4Y五个菌株(组合)。且三个组合菌株D7+H6、H6+L2、4Y+H6在造林期内接种促生效果均要显著优于单一菌株H6,而另三个组合菌株D7+L2、D7+4Y、D7+H6的接种效果未表现出显著优于单一菌株D7的现象。
     无性系广林9号及无性系3229接种同一固氮菌组合4Y+L2的对比试验中,接种组的苗高(树高)、地径(胸径)均要显著高于对照组。苗期试验,无性系广林9号及29接种后,地径分别比对照增长7.72%、20.18%,苗高增长量各达5.02%、16.40%;造林期时,接种固氮菌的的广林9号无性系及3229无性系的地径牛长量相对于对照组增长量各达8.04%-35.93%、4.9%-56.20%,树高增长量分别达35.74%、4.47%-72.22%。且苗期及第一次造林调查中,3229无性系接种效果要显著优于广林9号无性系,而第二次造林调查中,广林9号无性系的接种效果反而要显著优于3229无性系。在对桉树枝瘿姬小蜂危害的调查中,发现接种固氮菌的林木还农现出一定的环境抗逆性,在遭受桉树枝瘿姬小蜂严重危害后能较快恢复生长。
Plant growth-promoting rhizobacteria is one kind of bacteria which can benefit the growth of plant through various direct or indirect effects,also called PGPR.They are mostly N-fixing bacteria、P-releasing bacteria and K-releasing bacteria.In the early time,we isolated and purified a number of good N-fixing bacteria、P-releasing bacteria and K-releasing bacteria from the woodland of Eucalyptus、Podocarpus macrophyllus and Acacia crassicarpa.The tested strains were classified and identified by 16S rDNA-Sequential Analysis,and inoculated on Eucalyptus for seedling and afforestation test with randomized block design.A number of strains which have good growth-promoting effect had been screened out.The test provided realistic foundation and guidance for the sustainable forestry development of Eucalyptus and large area of inoculated afforestation.
     14 Strains which involved in 16S rDNA-Sequential Analysis were blasted in NCBI,they can be divided into four different genus initially:the five strains Nd、 9K、4K、4Kv、14K belong to Acinetobacter;the three strains N6、Nc、N1 belong to Bacillus;the five strains K1、40K、30K、6P、P1 belong to Staphylococcus;only N5 belong to Anaerococcus.
     Considered the results of seedling and afforestation test, the better were six of fourteen tested strains inoculated Eucalypus grandis×E.urophylla GL9, they were N1、N6、9K、NC、40K、14K.The tree heights of various treatment groups were higher 13.95%-32.21% than the control group, the basal diameters were higher 32.49%-54.94% than the control group.Compared the effect of growth-promoting which be screened out six good PGPR between N-fixing bacteria(Nc,N6,N1) and K-releasing bacteria(40K,14K,9K), T test results showed that the effect of growth-promoting of N-fixing bacteria significantly superior to K-releasing bacteria.
     From the inoculation test results of 8 different mixed strains N-fixing bacteria and P-releasing bacteria from Vegetable research base,the four fixed strains N1+P、N1+L2+P、L2+P、4Y+L2+P showed a better inoculation effect of growth-promoting.The fixed strains N1+P、N1+L2+P、L2+P、4Y+P、4Y+L2+P showed a better inoculation effect of growth-promoting significantly than the single strain P.The fixed strains N1+P which from the Eucalyptus woodland showed a better seedling (tree)height significantly than the fixed strains 4Y+L2 which from the Podocarpus macrophyllus woodland.
     From the results of Eucalyptus grandis×E. urophylla GL9 inoculated with 8 different N-fixing bacteria in Guangxi Forestry Research Institute,the 5 strains D7+4Y、H6+L2、H6、D7、L2+4Y showed a better growth-promoting effect of inoculation.The three fixed strains D7+H6、H6+L2、4Y+H6 showed a better growth-promoting effect significantly than the single strain H6 in afforestation test.But the other fixed strains D7+L2、D7+4Y、D7+H6 did't show a better growth-promoting effect significantly than the single strain D7.
     Contrast experiments of Eucalypus grandis×E.urophylla GL9 and E. urophylla×E. grandis 3229, which both inoculated by fixed strain 4Y+L2, the results showed that:the tree height and basal diameter of inoculation group were both higher than the control group.The basal diameters of GL9 and 29 were higher 7.72% and 20.18% respectively than the control group, the seedling heights of GL9 and 29 were higher 5.02% and 16.40% respectively than the control group in seedling test.The basal diameter of GL9 and 29 were higher 8.04%-35.93% and 4.9%-56.20% respectively than the control group, the tree height of GL9 and 29 were higher 35.74% and 4.47%-72.22% respectively than the control group in forestation test.The effect of inoculation of 29 significantly superior to GL9 in the seedling test and the first afforestation test, while the effect was on the contrary in the second afforestation test. In addition, the two Eucalyptus clones inoculated with N-fixing bacteria also showed high resistance in the environment, trees can resume the growth rapidly after suffering from the serious damage of Leptocybe invasa Fisher et La Salle.
引文
[1]Rosello-Mora R, Amann R.2001.The species concept for prokaryotes[J].FEMS Microbiology Reviews, 25(1):39-67
    [2]黄晓东,季尚宁,Bernard Glick, et al植物促生菌及其促生机理[J].现代化农业,2002,278(9)
    [3]Bashan Y, LE de-Bashan.Bacteria/plant growth-promotion[C]//D Hillel.In Encyclopedia of soils in the environment.Vol 1. Oxford, UK.:Elsevier,2005:103-115
    [4]方丽英,吴庆梅,吕成群,等.土壤益生菌对盆载马尾松苗生长的影响[J].四川林业科技,2007,28(5)
    [5]籈建国,杨邦俊,袁铃.植物吸收利用钾素研究的某些进展[J].植物营养与肥料学报,1995,1(1):38-43
    [6]陈因,陈永宾,唐锡华,等.生物固氮.上海科技出版社[M].1985,8(1):5-6
    [7]姜涌明.生物固氮的秘密[M].1981,12:130-132
    [8]张美琴,马建华,赵月英,等.植物联合固氮菌及其促生作用研究进展[J].内蒙古农业科技,2007(4):80-83
    [9]王光华,赵英,周德瑞,等.解磷菌的研究现状与展望[J].生态环境,2003,12(1):96-101
    [10]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,5(3):7-11
    [11]席琳乔,冯瑞章.植物根际解磷菌的研究进展[J].塔里木人学学报,2006,18(4)
    [12]GERRETSEN F C.The influence of microorganisms on the phosphate intakebyPlant[J]. PlantandSoil, I948,1:51-81
    [13]SACKETTW G, PATI'ERN AG, BROWNCW The solvent action of soil bacteria upon the insoluble pbosphates of raw bone meal and natural law rock phosphate [J].Central Bacterial,1908,20:688-703
    [14]Sperber J I. Solution of apatite by soil microorganisms producing organic acids[J]. Australia Journal of Agricultural Research,1958,9:782-789
    [15]Kobus J. The distribution of microrganisms mobilizing phosphorus in different soils[J]. Acta Microbiology of Polish,1962,11:255-264
    [16]Kucey R M, Janzen H H, Legett M E. Microbially mediated increases in plant—available phosphorus[J]. Adv. Agron,1989,42:199-228
    [17]De Freitas, J.R. et al.Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola(B rassica napus L.[J].Biol.Fertil.Soils,1997,24:358-364
    [18]I aha, S.M. et al. Activity of phosphate-dissolving bacteria in Egyptian[J].Plant Soil,1969,31:149-160
    [19]邱碧云.硅酸盐细菌肥---一种值得推广的新钾肥[J].农村经济与技术.1997,09
    [20]许光辉,郑洪元土壤微生韧分析方法手册[M]北京农业出版杜.1986.135-136
    [21]刘荣昌.生物钾肥在农业生产中的作用[A]见:微生物肥料的生产应用及其发展[C].北京:中国农业科拄出版杜,1996.66-74
    [22]黎林.生物固氮的研究现状初探.韶关学院学报[J].2009,30(3)
    [23]倪礼斌,陈志忠.玉米应用联合固氮菌增产效果探讨[J].上海农业科技,1999,(1):62
    [24]施振云,王德君.联合固氮菌剂拌种对玉米苗期生长和和产量的影响[J].玉米科学,2000,8(1):69-71
    [25]Stepanenkol L, Goncharov N P. Associative nitrogenfixation in the rhizosphere of diferent wheat species[J]. Plant Physiology,1995,42(6):741-745
    [26]Kanungo P K, Panda D, Adhya T K, et al. Nitrogenase activity an d nitrogen—fixing bacteria associated with rhizosphere of rice cuhivars with varying N absorption efficiency [J|. Science ofFood and Agriculture,1997,73(4):485-488
    [27]张英,王玲燕.联合固氮菌对小白菜和莴苣的使用效果[J].上海农业学报,2000,16(4):70-73
    [28]莫立鲜.甘蔗根际联合固氮菌试验[J].甘蔗,2001,8(1):25-27
    [29]关秀清,杜千有.内蒙古草原羊草根际联介固氮菌的分离鉴定及其生理生化特性研究[J].草地学报.1997,5(2):101-107
    [30]胡晓颖.桉树根际联合固氮菌SEM样品制造方法的探讨[J].电子显微学报,1998,17(4):333-334
    [31]刘永正,王国灿.黄瓜接种联合固氮菌的效应简报[J].嘉兴农业,1995,(1):48-48
    [32]李春明,张磊,徐征,等.联合固氮菌对玉米小麦及红薯的增产效应[J].西南农业大学学报,2003,25(6)
    [33]韦立秀,黄宝灵,莫雅芳,等。石灰岩山地根瘤菌对台湾相思苗木生长效应[J].福建林业科技,2008,35(4)
    [34]文晓萍,黄宝灵,吕成群,等.巨尾桉接种根瘤菌试验效果初探[J].西北林学院学报,2008,23(6)
    [35]聂延富.关于诱导无根瘤植物结根瘤的研究——化学因子2,4-D诱导根瘤菌在小麦上结根瘤[J].自然杂志,1983,6(5):326-336
    [36]谢应先,陈婉华.用细胞融合法组建新固氮植物的可能性[J].中国农业科学,1985,17(04):92-95
    [37]张爱民,章淑艳,张双凤.具有杀虫效果的生物肥料的研制[J].河北大学学报,2006,26(4)
    [38]A. Ayanaba,谢应先译.细菌和氮素经济.非豆科作物固氮研究进展.陈廷伟主编,中国农业科技出版社,1989:27-34
    [39]M.B.Peoptes, D.F.Herridge, J.K. Ladha. Biological nitrogen fixation:An efficient source of nitrogen for sustainable agdcaltural production.Plant and Soil,1995,174:3-28
    [40]Ivan R.Kennedy and Yao Tiseng Tchan.Biological nitrogen fixation in non-legutninous field crops:Recent advances. Plant and Soil,1992,141:93-118
    [41]Junji Ishizuka, Trends in biologcal nitrogen fixation research and application, Plant and soil.,1992, 141:197-20
    [42]黄群策,陈启锋,李志真.生物固氮研究的前景[J].科技导报,1999(1):27
    [43]林启美,赵小蓉,孙炎鑫,等.四种不同生态环境中解磷细菌的数量及种群分布[J].土壤与环境,2009,9(1):34-37
    [44]Kabznilson H, Peterson E, Rouatt J W. Phosphate-dissolving microorganisms on seed and in the root zone of plants[J].Canadean Journal of Botang,1962,40(9):1181-1186
    [45]Paul N B, Sundara Rao W B. Phosphate-dissolving bacteria in the rhizosphere of some cultivated hegumes[J]. Plant and Soil.1971,35:127-132
    [46]Molla M A Z。Chowdhury M A. Microbial mineralization of organic phosphate in soil[J]. Plant and soil,1984.78(1):393-399
    [47]Sperber J I.Solution of mineral phosphates by soil bacteria[J].Nature,1957,480:994-995
    [48]Kucey R M, Janzen H H, Legett M E. Microbially mediated increases in plant—available phosphorus[J]. Adv. Agron,1989,42:199-228
    [49]KUCEYRMN, JANZENHH, LEGGETTME. Inorganic phosphate solubilizing microoganisms: Microbially mediated increases in plant available phosphorus[J].Academic Press Inc,1989:202-220
    [50]ASEAPEA, KUCEY R M N, STEWARTJWB.Inorganic phosphate solublization by two Penicillium species in solution culture and soil[J].Soil Boil Biochem,1988,20:459-464
    [51]CEREZINEDC. NAHASE. Soluble phosphate accumulation by Aspergillus niger from fluorapatite[J].Appl Microbiol Biotechnol,1988,29:501-505
    [52]NAHASE, BANZATODA, ASSISLC. Fluorapatite solubilization by Aspergillus niger in vinase medium[J]. Soil Bio Biochem,1990,22:1097-1101
    [53]王富民,刘桂芝,张彦等.高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究[J].生物技术,1992.2(6):34-37
    [54]范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学.2002.35(5):525-530
    [55]Louw H A, Webley D M.A study of soil bacteria dissolving certain mineral phosphate fertilizers and related compounds[J].J Appl Bacteriol,1959,22:227-233
    [56]郜春花,张强,卢朝东,等.选用解磷菌剂改善缺磷土壤磷素的有效性[J].农业工程学报,2005,5,21(5):56-58
    [57]简宜裕,吴继光.溶磷菌于土壤中之存活对土壤有效磷影响的研究[J].土壤肥料报告(台湾).1995,83:313-319
    [58]谢应先.绿发生物肥的研制原理和工业化生产[J].北京农业科学,1994,(增刊):9-15
    [59]GULDEN R H, VESSEY J K. Penieillium bilaii inoc ulation increases rot-hair production in field pea[j]. Canadian journal of plant science,2000,80(4):801-804
    [60]VESSEY J K, HEISINGER K G. Eff t ofPeniciIlium bilaii inoculation an d phos phorus fertilisation OllrOOt and shoot parametes of field—grown pea 册.Canadian Journal of PlantScience,2001,81(3):361.366
    [61]王伟,李佳,刘金淑,等.硅酸盐细菌菌株的分离及其解钾解硅活性初探[J]].安徽农业科学,2009,37(17):7889-7891
    [62]李元芳.硅酸盐细菌肥料的特性和应用[J].土壤肥料,1994,2:48249
    [63]周俊,储国正.钾资源的地球化学背景及其开发利用[J].矿产综合利用,1999(4):36-40
    [64]徐小燕,马毅杰.土壤矿物钾的释放及其在植物营养中的意义[J].土壤通报,2001,32(4):1722176
    [65]陈廷伟,陈华癸.钾细菌的形成生理及其对磷钾矿物的分解能力[J].微生物,1960,2(3):1041212
    [66]薛泉宏,李素俭,张俊宏,等.液培条件下钾细菌对土壤养分的活化作用研究[J].西北农业大学学报,1999,27(2):33-37
    [67]席琳乔,宋爱民,龚明福,等.棉花根际硅酸盐细菌解钾机理的初步研究[J].西北农业学报,2009,18(3):309-314
    [68]钮旭光,华秀英.何随成.硅酸盐细菌解钾活性的研究[J].土壤通报,2005,36(6):9502953
    [69]陆引罡,钱晓刚,龙键.硅酸盐细菌对含钾矿物物的解钾作用[J].贵州农业科学,1999,27(3):26228
    [70]王康林,韩效钊,张雪琴,等.硅酸盐细菌的选育与解钾性能研究[J].工矿物与加工,2005(2):25227
    [71]薛智勇,汤江武,钱红,等.硅酸盐细菌在不同土壤中的解钾作用及对甘薯的增产效果[J].土壤肥料,1996(2):23226
    [72]王志,花爱军.固氮、解磷、解钾细菌制剂的肥效试验[J].辽宁农业科学,2003(6):7-8
    [73]张红娟,张朝阳,聂刚.钾细菌对土壤养分活化作用的研究[J].杨凌职业技术学院学报,2005,9,4(3):4-6
    [74]盛下放.硅酸盐细菌在不同生境中的分布[J].土壤,2004,36(1):81-84
    [75]雷正瑜16SrDNA序列分析技术在微生物分类鉴定中的应用[J].湖北生态工程职业技术学院学报,2006(1):4
    [76]乐毅全,王士芬.环境微生物学[M].化学工业出版社,2005(3):6
    [77]焦振泉,刘秀梅,杨瑞馥,等.椰毒假单胞菌酵米面亚种16SrDNA序列测定与分析[J].卫生研究,1999,28(4):232
    [78]李琳,李槿年,余为一.细菌分类鉴定方法的研究概况[J].安徽农业科学,2004,32(3):549-551
    [79]AMANN R I, LUDWIG W, SCHLEIFER K H.Phylogenetic identification and in situ.detection of individual microbial cells without cultivation[J].Microbiological Reviews,1995,59:143-169
    [80]RONDON M R, AU GUST PR, BETTERMANN A D.Cloning the soil metagenome:a strategy for accessingthe genetic and functional diversity of uncultured microorganisms[J], Applied and Environmental icrobiology,2000,66(6):2541-2547
    [81]CULLEND W, HIRSCHP R.Simple and rapid method for direct extraction of microbial DNA from soil for PCR[J].Soil Biol Biochem,1997,30:983-993
    [82]洪义国,孙谧,张云波,等16SrRNA在海洋微生物系统分子分类鉴定及分子检测中的应用[J]. 海洋水产研究,2002,23(1):58-63
    [83]黄正根,刘昕.应用16SrDNA检测致病菌的研究进展[J].中华检验医学杂志,2005,6,28(6):663
    [84]彭仕尧,陈少雄,陈文平.优良桉树无性系的评估[J].桉树科技,2002,1(1)
    [85]邓秀汕.桉树常见施肥误区[J].广西农学报,2009,4,24(2):53-54
    [86]臧国长,马祥庆,蔡丽平.我国桉树人工林施肥研究进展[J].福建林业科技,2007,12,34(4):253-258
    [87]BASHAN Y,HOLGUIN G.Plant growth-promoting bacteria:A potential tool for arid mangrove reforestation [J].Trees,2002,16:159-166
    [88]ROJAS A,HOLGUIN G,GLICK B R,et al.Synergism between Phyllobacterium sp. and Bacillus licheniformis,both from a semi-arid mangrove rhizosphere [J].FEMS Microbiol Ecol,2001,35:181-187
    [89]SHISHIDO M,CHANWAY C P. Colonization and growth of outplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse [J].Can J For Res,2000,30:848-854
    [90]PROBANZA A.LUCAS G J A.Pinus pinea L.seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus [J].Appl Soil Ecol,2002,20:75-84
    [91]Delong E F.Archaea in coastal marine environments.Proc Natl A. cad Sci USA,1992,89(12):5685
    [92]张力SPSS 13.0在生物统计中的应用[M].厦门:厦门大学出版社,2006:42-58
    [93]CHANWAY C P.Differential response of western hemlock from low and high elevations to inoculation with plant growth-pro-moting Bacillus polymyxa [J].Soil Biol Biochem,1995,27:767-775
    [94]吴洪生,陈佳宏,刘正柱.等.钾细菌制剂对土壤钾素的影响探讨[J].中国生态农业学报,2003,7,11(3):92-94
    [95]钱军,梁居智,蔡兴新.海南省桉树枝瘿姬小蜂危害现状及桉树抗品系调查[J].热带林业,2010,3,38(1)
    [96]常润磊,周旭东.我国桉树枝瘿姬小蜂研究现状[J].桉树科技,2010,6,27(1):75-78
    [97]陈江,王缉健,刘宇.桉树枝瘿姬小蜂危害巨园桉的研究,2010,3,39(1):11-13
    [98]康丽华,徐大平,徐建民.桉树接种固氮菌效果的研究[J].广东林业科技,1999,5(12):33-36
    [99]SHISHIDO M, CHANWAY C P. Colonization and growth of outplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the preenhouse[J].Can J For Res,2000, 30:848-854
    [100]刘淑琮,冯炘,于洁.植物根际促生菌的研究进展及其环境作用[J].湖北农业科学,2009,11,48(11):2885
    [101]康丽华.桉树与联合固氮菌相互作用的研究[J].微生物学通报,2002,29(4):16-17
    [102]LUCY M, REED E, BERNARD R. Applications of free living plant growth-promoting rhizobacteria [J].Antonie van Leeuwenhoek,2004,86:1-25