纤维活性粉末混凝土抗弯拉强度影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性粉末混凝土(Reactive Powder Concrete,RPC)是一种具有超高强度、韧性的新型水泥基复合材料,它与普通的混凝土相比具有明显的在强度、韧性、耐久性等方面的优势,特别是其抗拉强度和韧性远高于普通混凝土。
     RPC抗弯拉强度跟材料的配合比、养护条件、钢纤维掺量等有密切关系,其中影响最显著的是钢纤维掺量。钢纤维对RPC基体的增强、增韧作用主要是通过钢纤维与基体之间的应力传递实现的,因此界面粘结性能的好坏对钢纤维增强、增韧的效果又起着至关重要的作用。
     本文先对钢纤维与RPC基体的粘结性能进行了试验研究,深入分析了钢纤维间距、钢纤维分布对粘结性能的影响、采用力学计算模型分析钢纤维与基体间的界面应力传递以及通过试验测量荷载—滑移全曲线,并以此分析钢纤维对RPC材料的增强、增韧作用及拔出过程中的粘结耗能情况。在对钢纤维与RPC基体粘结性能的试验基础上进一步研究了钢纤维掺量、骨料的粒径、养护制度对RPC材料抗弯拉强度的影响,得出了以下结论:
     (1):通过钢纤维和RPC基体材料的粘结拉拔试验,分析了钢纤维的长径比、纤维间距、不同的纤维分布对粘结性能的影响。从试验结果中发现钢纤维在不同的纤维间距下与基体的极限粘结强度明显不同,相同的拔出纤维根数下随着钢纤维间距的增大极限粘结强度呈现先增大而后趋于稳定的趋势,同时发现纤维分布对粘结强度影响不显著;推导了纤维拔出过程的力学计算模型,并采用该力学计算模型结合本实验的试验结果分析了纤维拔出过程中界面的应力分布及传递;采用粘结性能试验结果拟合了纤维间距与钢纤维粘结强度之间的关系,分析发现当纤维间距很小时粘结强度随着纤维间距的减小呈指数形式衰减;分析了钢纤维粘结滑移曲线特征、纤维间距对纤维拔出过程耗能能力的影响。
     (2):试验发现在RPC浆体中钢纤维能充分均匀分布的情况下RPC抗弯拉强度随着钢纤维掺量的增加而增加,2%钢纤维体积掺量时纤维增强效率最佳。热水养护下由于能够充分发挥RPC原材料的硅灰等火山灰质材料的火山灰活性,所以85℃热水养护48小时的RPC试件抗弯拉强度均略高于28天标准养护的RPC试件的抗弯拉强度。试验发现当RPC中细骨料的粒径较小时对RPC的抗弯拉强度不产生明显的影响,但是当骨料粒径较大时会对浆体中的纤维分散产生比较明显的影响,试验中发现骨料粒径过大时会有纤维成团现象从而显著降低了RPC材料的抗弯拉强度。同时采用了控制位移加载的方式测量了RPC矩形小梁的荷载—挠度全曲线,并对其韧性进行了评价。
     (3):本文分析和总结了关于纤维增强复合材料的增强理论,在此基础上并基于纤维均匀分布的假设及结合钢纤维与RPC基体粘结强度试验结果推导了RPC抗弯拉强度计算公式。将理论计算结果与本文抗弯拉试验结果进行了对比,发现当钢纤维分布较为均匀时理论计算结果跟试验结果具有比较好的近似性,当钢纤维出现成团等不均匀分布现象时理论计算结果跟试验值具有很大的差异。
Reactive Powder Concrete(RPC) is a cementitious material with ultra-high performance, such as ultra-high strength、ultra-high ductility, it obviously have higher strength、higher ductility and higher durability、especially much higher tensile strength and ductility compared to normal strength concrete(NSC).
     There are many factors which will affect the bending tensile strength of RPC, such as mix proportion、curing condition、fiber volume fraction, while fiber volume fraction play a major role in determining the bending tensile strength of RPC. The reinforcing and toughening effect of steel fiber in the matrix of RPC mainly through the stress transfer taking place across the fiber/matrix interface.
     This paper based on the fiber pull-out experiment to study the bond slip characteristics between steel fiber and the matrix of RPC. Several parameters were taken into account in this test such as fiber diameter, different fiber distribution and different fiber distance. The influences of fiber distribution and fiber distance on the pullout curves and pullout works are studied. The two-cylinder model for the single-fiber pull-out test was used to analyze the stress transfer between fiber/matrix interface. Then, the influence of bending tensile strength (such as steel fiber volume fraction、curing regimes、fine aggregate diameter )of RPC was systematically analyzed. From the fiber pull-out experiment and flexural test we get the following main conclusions:
     (1): By means of the fiber pull-out experiment, we found that the effect of fiber distance play a major role in determining the adhesive property and stress transfer of steel fiber/RPC matrix interface. With the increasing of fiber distance, maximum bond strength of fiber/matrix was also increasing firstly and then becoming stable. Mechanical calculation model for the fiber pull-out was established, and also by the use of the model, adhesive property and stress transfer of steel fiber/RPC matrix interface were systematically analyzed. By use of the experimental results, we create fit curves, which can indicate the relationship between the fiber distance and adhesive strength。
     (2):The increase of steel fiber volume fraction can enhance the bending tensile strength of RPC under uniform distribution of fibers, when the steel fiber volume fraction increases from 0% to 3%, the bending tensile strength increases from 9.0MPa to26.9MPa.But from the economical point of view ,2% steel fiber volume fraction provide the best reinforcing efficiency. RPC is normally heat treated at an early age for 24~48 hours at 80~90℃,because of such treatment can accelerate the pozzolanic reaction of silica fume with Ca(OH)2.This explains the bending tensile strength of the specimens under hot water curing condition for 48 hours at 85℃is a little higher than the specimens under standard curing condition for 28 days. It was found that aggregate diameter will affect the distribution of steel fibers, when the aggregate diameter increases to 5mm, the bending tensile strength will drops significantly.
     (3): This paper summarizes the theories of fiber reinforced composites, by using of these theories and based on the assumption of uniformly distributed fibres、perfect bonding between the fiber and matrix, a computational formula of flexural strength of RPC was deduced. The flexural strengths estimated based on the computational formula was then compared with the measured flexural strengths. It can be seen that there is little difference in flexural strength between the measured and the predicted values when fibers are uniformly distributed in matrix, nonetheless there is noticeable diffenence while fibers are badly distributed in matrix.
引文
[1] Peter Buitelaar.Ultra High Performance Concrete:Developments and Application -s during 25 years.www.ferroplan.com.German,2004
    [2] Kay Wille,Antoine E.Naaman,Gustavo J et al.Ultra High Performance Concrete with Compressive Strength Exceeding 150MPa(22ksi):A Simpler Way.ACI Mate -rials Journal,2011,108:54
    [3] Della M.Roy.New Strong Cement Materials,Chemically Bonded Ceramics.Scienc -e,1987,235:651-658
    [4]王震宇,陈松来,袁杰.活性粉末混凝土的研究与应用进展.混凝土,2003,(11): 39-44
    [5] Pierre Y B. Marco Couture.Precast,Prestressed Pedestrian Bridge-World’s First Reactive Powder Concrete Structure.PCI Journal,1999,40(5):60-71
    [6] Behloul B, Lee KC.Ductal? Seonyu footbridge. Structure Concrete,2003,4(4): 195-201
    [7] Dr.Urs Maeder,Dr.Isabelle Lallemant-Gamboa,Joel Chaignon,et al.Ceracem,a ne -w high performance concrete:characterizations and applications.In:First Interna -tional Symposiumon Ultra High Performance Concrete.German,2004,59-68
    [8] Ziad HAJAR,Daniel LECOINTRE,Alain SIMON,et al.Design and Construction of the world first Ultra-High Performance Concrete road bridge.In:First Internati -onal Symposium on Ultra High Performance Concrete.German,2004,39-47
    [9] Peter BUITELAAR,RenéBRAAM.Heavy Reinforced Ultra Thin White Topping of High Performance Concrete for Re-strengthening and Rehabilitation of Struct -ures and Pavements.www.ferroplan.com.Japan,2008
    [10]黄政宇,沈蒲生,蔡松柏.200MPa超高性能混凝土试验研究.混凝土,1993,(3):3-7
    [11]敖长江.工业厂房扩建工程RPC构件预制施工技术.山西建筑,2005,31(18):121-122
    [12]檀军锋,活性粉末混凝土(RPC)在铁路预制梁工程中的应用.上海铁道科技,2007,(2):54-55
    [13]阎培渝,余成行.薄层活性粉末混凝土的现场免振捣浇注施工.混凝土,2009,(8):1-2
    [14] Bierwagen D,Hawash A A.Ultra High Performance Concrete Highway Bridge.In:Proceeding of the 2005 Mid-Continebt Transportation Symposium,Iowa,2005,1- 14
    [15] Ekkehard Fehling,Kai Bunje,Michael Schmidt.Design of First Hybrid UHPC-Ste -el Bridge across the River Fulda in Kassel,Germany.In:Second International Sy -mposiumon Ultra High Performance Concrete.German,2008,581-588
    [16] Katrin Habel,Emmanuel Denarié,Eugen Brühwiler.Structural response of compos -ite“UHPFRC-concrete”members under bending.In:First International Symposiu -m on Ultra High Performance Concrete.German,2004,389-399
    [17] Eugen Brühwiler, Emmanuel Denarié.Rehabilitation of concrete structures using Ultra-High Performance Fibre Reinforced Concrete.In:Second International Symposium on Ultra High Performance Concrete.German,2008,895-902
    [18] John Wuest, Emmanuel Denarié, Eugen Brühwiler.Model for predicting the UHPFRC tensile hardening response.In:Second International Symposium on Ultra High Performance Concrete. German,2008,153-160
    [19] P.Kumar Mehta,Paulo J.M.Monteiro.混凝土微观结构、性能和材料.覃维祖,王栋民,丁建彤译.原著第三版.北京:中国电力出版社,2008,321-327
    [20]蒲心诚.超高强高性能混凝土原理.配制.结构.性能.应用.重庆:重庆大学出版社,2004,11-12
    [21]闫光杰,阎贵平,安明喆等.200MPa级活性粉末混凝土试验研究.铁道学报,2004,26(2):116-119
    [22]安明喆,宋子辉,李宇.不同钢纤维含量RPC材料受压力学性能研究.中国铁道科学,2009,30(5):34-38
    [23]余自若,安明喆,阎贵平.活性粉末混凝土的疲劳强度研究,混凝土,2008,(7):3-6
    [24] Bierwagen D, Hawash A A. Ultra High Performance Concrete Highway Bridge. In: Proceeding of the 2005 Mid-Continebt Transportation Symposium, Iowa, 2005, 1-14
    [25] Richard P.Composition of Reactive Powder Concrete.Cement and Concrete Research,1995,25(7):1501-1511
    [26]安明喆,杨志慧,余自若等.活性粉末混凝土抗拉性能研究.铁道学报,2010,32(1):54-58
    [27]余自若,阎贵平,张明波.活性粉末混凝土的弯曲强度和变形特性.北京交通大学学报,2006,30(1):40-43
    [28] Su Tae Kang,Bang Yeon Lee,Jin-Keun Kim, et al.The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra highstrength concrete.Construction and Building Materials,2011,25(5):2450-2457
    [29]杨志慧.不同钢纤维掺量活性粉末混凝土抗拉性能研究:[北京交通大学硕士学位论文].北京:北京交通大学,2007,7-8
    [30]单波.活性粉末混凝土基本力学性能的试验研究.[湖南大学硕士学位论文].湖南:湖南大学土木工程学院,2002,51-54
    [31]杨萌.钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究.[大连理工大学博士论文].大连:大连理工大学,2006,29-125
    [32]小林一辅.纤维补强混凝土.邹崇富.第一版.北京:中国铁道出版社出版,1985,39-40
    [33]杨萌,黄承逵.钢纤维与高强砂浆基体粘结性能试验研究.建筑材料学报,2005,(4):384-389
    [34]黄承逵,田稳苓,赵国藩.钢纤维与水泥砂浆粘结强度试验研究.海威姆预应力技术,2001,(1):23-36
    [35] Naaman A E,Najm H.Bond-slip mechanisms of steel fibers in concrete.ACI Materials Journal,1991,2:135-145
    [36] Naaman A E,Namur G G,Alwan J M,etc.Fiber pullout and bond slip.Ⅱ:experime -ntal validation Journal of Structual Engineering,1991,117(9):2791-2801
    [37] D.J.平钦,D.泰博.钢-水泥界面力学性能试验:试验结果介绍.见:国际材料与结构试验室联合会一九七五年会议文集第二册.北京:中国建筑工业出版社,1980,72-78
    [38] Shao-Yun Fu,Chee-Yoon Yue,Xiao Hu,Yiu-Wing Mai.Analyses of the micromec -hanics of stress transfer in single and multi-fiber pull-out tests.Composites science and Technology,2000,60:569-579
    [39]孙伟.钢纤维对高强混凝土增强、增韧与阻裂效应的研究.东南大学学报,1991,6(2):21-24
    [40]张胜,周锡玲,谢友均等.养护制度对活性粉末混凝土强度及微观结构影响的研究.混凝土,2007,(6):16-18
    [41] Ingo Schachinger,Harald Hilbig,Thorsten Stengel.Effect of Curing Temperature at an Early Age on the Long-Term Strength Development of UHPC.In:Second International Symposium on Ultra High Performance Concrete.German,2008,20 5-212
    [42]高丹盈,刘建秀.钢纤维混凝土基本理论.北京:科学技术文献出版社,1994,89-109
    [43]庄茁,蒋持平.工程断裂与损伤.北京:机械工业出版社,2004,97-108
    [44]何峰,黄政宇.养护制度对活性粉末混凝土(RPC)强度的影响研究.混凝土,2000,(2):31-34
    [45]黄承逵.钢纤维混凝土结构.北京:机械工业出版社,2004,14-15
    [46]谭彬.活性粉末混凝土受压应力应变全曲线的研究:[湖南大学硕士学位论文].湖南:湖南大学土木工程学院,2007,16-19
    [47]沈荣熹,王璋水,崔玉忠等.纤维增强水泥与纤维增强混凝土.北京:化学工业出版社,2006,3-281
    [48]汉南特著.纤维水泥与纤维混凝土.陆建业译.北京:中国建筑工业社,1986.6 -45
    [49]龙广成.活性粉末混凝土力学性能的试验研究.混凝土,2004,(10):44-45
    [50]黄育,郭志尾,陈万祥等.钢纤维活性粉末混凝土性能的试验研究.建筑石膏与胶凝材料.2004,(8):17-19
    [51]龙广成,谢友均,王培铭等.活性粉末混凝土的性能与微细观结构.硅酸盐学报,2005,(4):456-458
    [52]冯乃谦.实用混凝土大全.北京:科学出版社,2001:3-10
    [53]冼杏娟.纤维增强复合材料界面的力学行为.力学进展,1992,22(4):464-478
    [54] A.Naman and J.R.Homrich.Tensile Stress-Strain Properties of SIFCON.ACI Mat -erial Journal,1991,88(4):135-145
    [55] N.Roux,C.Andrade,and M.A.Sanjuan.Experimental study of durability of reactiv -e powder concretes.www.ascelibrary.org.1996-2
    [56] Jürgen Schnell, Florian P.Ackermann, Ronald Rosch etal.Statistical analysis of fibre distribution in ultra high performance concrete using computer tomography. In:Second International Symposium on Ultra High Performance Concrete. German,2008,145-152
    [57] Withit Pansuk, Hideki Sato,Yasuhiko Sato etal.Tensile Behaviors and Fiber Orientation of UHPC.In:Second International Symposium on Ultra High Perform -ance Concrete.German,2008,161-168
    [58] Martin Empelmann, Manfred Teutsch, Guido Steven.Improvement of the post fracture behaviour of UHPC by Fibres.In:Second International Symposium on Ultra High Performance Concrete.German,2008,177-184
    [59] Urs Müller, Birgit Meng, Hans-Carsten Kühne etal.Micro texture and mechanica -l properties of heat treated and autoclaved Ultra High Performance Concrete(U -HPC). In:Second International Symposium on Ultra High Performance Concrete . German 2008,213-220
    [60] D.J.汉南特.裂后韧性对纤维水泥和纤维混凝土抗弯强度的影响.见:国际材料与结构试验室联合会一九七五年会议文集第二册.北京:中国建筑工业出版社,1980,44-57
    [61]赫伯特.克伦歇尔.纤维间距和纤维表面.见:国际材料与结构试验室联合会一九七五年会议文集第一册.北京:中国建筑工业出版社,1980,82-94
    [62] A.E.纳曼,S.P.夏.关于定向和顺向钢纤维粘结力的研究.见:国际材料与结构试验室联合会一九七五年会议文集第一册.北京:中国建筑工业出版社,1980,196-204
    [63] A.S.阿贡,W.J.沙克.纤维水泥与纤维混凝土的理论探讨.见:国际材料与结构试验室联合会一九七五年会议文集第一册.北京:中国建筑工业出版社,1980,48-66
    [64] D.K.黑尔.多缝开裂的间断纤维复合材料中的纤维拔出.见:国际材料与结构试验室联合会一九七五年会议文集第一册.北京:中国建筑工业出版社,1980,67-81
    [65]蔡四维,蔡敏.混凝土的损伤断裂.北京:人民交通出版社,1999,35-122
    [66] B.R.劳恩,T.R.威尔肖.脆性固体断裂力学.陈颙.尹祥础译.北京:地震出版社,1985,1-15
    [67]杜善义,王彪.复合材料细观力学.北京:科学出版社,1998,59-250
    [68] Marko Orgass,Yvette Klug.Fibre Reinforced Ultra-High Strength Concretes. In:Second International Symposium on Ultra High Performance Concrete. German,2004,637-647
    [69] B.Middleton, R.Day, L.Cowe Falls.Durability and mechanical properties of high performance concrete for Ultra-Thin Whitetopping Pavements.In:Second Interna -tional Symposium on Ultra High Performance Concrete.German,2008,745-756
    [70] Chanvillard G,Rigaud S.Complete characterization of tensile properties of Ductal?UHPFRC according to the french recommendations.In:Proceedings of the fourth international RILEM workshop on high performance fibre reinforced cement composites(HPFRCC4).Ann Arbor,2003,21-34
    [71] JSCE,Recommendations for design and construction of ultra high-strength fibre-reinforced concrete structures-draft.Japanese,2004
    [72]哈尔滨建筑工程学院,大连理工大学.《钢纤维混凝土试验方法》(CECS 13:89).北京:中国计划出版社.1989,45-49