丛枝菌根对喀斯特地区土壤中不同水分条件下大豆抗旱性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以大豆为研究对象,探讨了干旱条件下喀斯特地区碱性岩溶土酸性土两种典型土壤中分别接种2号菌(Glomus mosseae,G.m),和13号菌(Glomus constrictum,G.c)两种AMF对大豆植株抗旱性的影响,研究结果如下:
     1.干旱胁迫下,大豆幼苗的菌根侵染率各指标(F%、M%、A%和V%)都显著低于正常浇水处理;相对于不接菌干旱处理,接菌干旱处理大豆的菌根侵染强度等指标均显著升高;比较两菌种间的菌根侵染强度,无论何种土壤,无论干旱否,上述大豆的菌根侵染率4指标均为干旱接种G.m处理>干旱接种G.c;比较同一菌种在不同土壤间的侵染强度,不沦接种何种AMF菌种,无论干旱否,上述大豆的菌根侵染强度4指标的变化趋势均是:酸性土处理>碱性土处理。
     2.干旱胁迫下,在碱性土酸性土中接种两种AMF后,相应的干旱不接菌对照相比,大豆植株叶片的相对含水量均有不同程度的提高,差异显著(P≤0.05),且接种G.m处理的相对含水量显著高于接种G.c处理,尤其是在酸性土中接种G.m处理保水能力最强。
     3.无论在碱性土酸性土中,干旱处理下,接种AMF后,各处理大豆叶中的超氧阴离子(O2-)累积量和丙二醛(MDA)含量表现出相同的变化趋势:干旱不接种AMF处理>干旱接种G.c处理>干旱接种G.m处理;干旱下接种同一AMF菌种处理的大豆在不同土壤问O2-累积量和MDA含量的变化趋势为:酸性土处理<碱性土处理,差异均显著(P≤0.05)。对于O2-累积量来说,接种不同AMF处理间差异显著;而对MDA含量来说,则接种不同AMF处理间差异不显著。此外,大豆植株中三种保护酶(SOD、POD、CAT)活性的变化则为:干旱接种G.m处理>干旱接种G.c处理>干旱不接种AMF处理,接种同种AMF菌种处理的大豆SOD、POD、CAT活性表现为:酸性土处理>碱性土处理,不同土壤间差异显著(P≤0.05)。
     4.干旱胁迫下,接种AMF的大豆叶片中游离脯氨酸和可溶性糖含量均有不同程度的增加,但接种同种AMF处理的大豆在不同的土壤中脯氨酸的含量变化差异不大,而可溶性糖含量变化则差异显著;干旱条件下,无论何种土壤,大豆的游离脯氨酸含量和可溶性糖含量变化趋势均为:接种G.m处理显著>接种G.c处理,而接种同种AMF菌种处理的变化趋势则为:碱性土处理略>酸性土处理。
     5.上述2中SOD活性变化趋势相似,在不同土壤中,相应的干旱不接种对照组比,干旱胁迫下接种两种AMF处理的大豆NR活性均显著增加,尤其在酸性土中,干旱接种G.m处理的NR活性>干旱接种G.c处理;而上述3中大豆叶片中的MDA含量变化趋势相似,干旱胁迫下,无论在何种土壤中接何种AMF,相应的干旱不接菌处理比,其可溶性蛋白含量均显著降低,且干旱接种G.m<干旱接种G.c<干旱不接种CK;无论接菌否,无论是否干旱处理,酸性土中大豆可溶性蛋白含量均<碱性土。
     6.干旱胁迫下,干旱不接菌处理比较,干旱接种AMF后大豆植株叶绿素含量、叶片胞问CO2浓度和净光合速率显著提高,且在不同土壤中接种相同AMF处理问差异显著。其中,大豆的叶绿素含量、叶片胞间CO2浓度净光合速率变化趋势为:干旱接种G.m处理显著>干旱接种G.c处理,而酸性土处理显著>相应的岩溶土处理且差异显著(P≤0.05);此外,干旱胁迫下,大豆叶气孔导度和蒸腾速率变化趋势也上述3中SOD活性变化趋势基本一致。
     7.干旱胁迫下,干旱不接菌处理相比,接种AMF处理的大豆整株生物量和籽粒产量显著提高,且在同一土壤中接种不同AMF处理间差异显著。干旱接种G.m处理大豆的整株生物量和籽粒产量>干旱接种G.c处理>干旱不接种AMF处理,并在酸性土中各处理问差异显著;干旱下在不同土壤中接同种AMF处理间整株生物量和籽粒产量变化为:酸性土处理>碱性土处理,差异显著(P≤0.05),干旱胁迫下,酸性土中接种G.m处理的大豆整株生物量和籽粒产量最高。
     综上所述,干旱胁迫下,不接种AMF对照相比,接种AMF后大豆植株的NR活性增强,超氧阴离子自由基(O2-和MDA含量降低,叶片中3种膜保护酶活性及几种渗透调节物质的含量提高,大豆植株的保水性、耐旱性增强,可缓解水分胁迫造成的伤害,大豆植株的光合速率等代谢活动维持较高水平,最终整株生物量和籽粒产量提高。
     此外,干旱接种G.m处理对大豆植株抗旱性的增强及生长的促进效应显著优于干旱接种G.c处理,Glomus mosseae (G.m)可作为喀斯特地区大豆生产中增强植株抗旱保水能力并提高产量的优势菌种之一。
Using soybean (Glycine max) as research material, a potted experiment was conducted to explore the effects of Glomus mosseae (G.m) and Glomus constrictum (G.c) on drought resistance in two typical karst soil (alkaline soil and acid soil). The results show as follows:
     1. Under drought stress, the infection intensity (M%), infection frequency (F%) and arbuscular abundance (A%) of soybean root system inoculated with AMF were significantly decreased than that with normal water condition. On the contrary, comparing to no-AMF and drought treatment, the three infection rate indexes (M%, F%and A%) of soybean with AMF and drought treatment increased significantly; Comparing infection rate between two AMF species, no matter what kind of soil and water condition, the three infection rate indexes of soybean with G.m and drought treatment were more higher than that with G.c and drought treatment; Moreover, comparing infection rate between two typical karst soil, no matter what kind of AMF and water condition, the three infection rate indexes of soybean in acid soil were more higher than that in alkaline soil.
     2. Under drought stress, comparing to no-AMF treatment, the relative water contents of soybean inoculated with different AMF were increased significantly (P≤0.05).And the water holding capacity of soybean with G.m was stronger than with G.c, especially in acid soil.
     3. In alkaline soil and acid soil, the accumulation of superoxide anion free radical (SAFR) and malondialdehyde (MDA) of soybean with AMF under drought condition showed the tendence that:the cumulative amount of SAFR and MDA under drought stress without AMF treatment were the highest than that with G.c plus drought stress treatment and that with G.m plus drought stress treatment respectively, the cumulative amount of SAFR and MDA with G.m plus drought stress treatment were the lowest.Comparing cumulative amount of SAFR and MDA between two typical karst soil, that in acid soil were more lower than that in alkaline soil. Regarding the accumulation of SAFR, it showed significant differences among treatments with different AMF; For accumulation of MDA, there had no significant differences among treatments with different AMF; The trend of activity changes of protective enzyme of soybean, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) indicated that: activities of3protective enzyme with G.m under drought stress> that with G.c under drought stress> that without AMF under drought stress. Inoculated with the same AMF, the activity changes of SOD,POD,CAT represented: Activities of3protective enzyme in acid soil> that in alkaline soil, and the differences of treatment were significant(P≤0.05).
     4. Under drought stress, comparing to no-AMF treatment, contents of free proline and soluble sugar with AMF treatment increased in different degree. Similar to change trend of SOD activity, content changes of free proline and soluble sugar with AMF treatment showed:that with G.m under drought stress> that with G.c under drought stress> that without AMF under drought stress,that in alkaline soil>that in acid soil.The differences of treatment were significant too (P≤0.05).
     5. Similar to change tendence of SOD activity, the activity of nitrate reductase (NR) with G.m under drought stress was higher than that with G.c under drought stress and that without AMF under drought stress. The activity of NR without AMF under drought stress was the lowest. Inoculated with the same AMF, the activity changes of NR in acid soil was higher than that in alkaline soil, and the differences of treatment were significant (P≤0.05). As for soluble protein, similar to change trend of MDA accumulation, content of soluble protein with AMF under drought treatment decreased significantly than that with no-AMF under drought treatment. Under drought stress, the content of soluble protein with G.m     6. Under the water stress,comparing with drought treatment without AMF, the content of chlorophyll, intercellular CO2concentration and photosynthetic rate as well as the transpiration rate and stomata conductance of soybean all increased significantly, the change tendency of the5indexes above were similar to that of SOD. The differences of same index with different treatments were significant (P≤0.05).
     7. Comparing with drought treatment without AMF, the biomass (dry weight of the whole plant) and grain yield of soybean with AMF and drought treatment increased significantly.The change trend of biomass and grain yield indicated:that with G.m under drought stress> that with G.c under drought stress> that without AMF under drought stress. In another word, soybean which inoculated with G.m in the acid soil had highest biomass and grain yield under drought stress.Furthermore, biomass and grain yield of soybean in acid soil>that in alkaline soil.The differences of same index with different treatments were significant(P≤0.05).
     Anyhow, under drought stress, compared with treatment without AMF, soybean inoculated with AMF had a high NR activity. Accompanied by the decrease of SAFR and MDA content, protective enzyme activity and the amount of osmotic regulation substance (free proline and soluble sugar) enhanced. The facts mentioned above result in better water retention capacity and mineral nutrient absorption ability,as well as alleviation of the drought injury. Then the drought resistance of soybean improved, metabolic activity such as photosynthesis maintained a high level.Finally, the biomass and grain yield of soybean enhanced.
     Moreover, under drought condition, the promoting effect on drought resistance and growth of soybean with G.m was higher than that with G.c. It drew a conclusion that Glomus mosseae(G.m) can be used as one of the dominant candidate fungi for improving water holding ability,biomass and grain yield of soybean in the karst areas.
引文
[1]仇农学,李建科.大豆制品加工技术[M].北京:中国轻工业出版社,2000.
    [2]张丽,曹永强,武丽石,等.大豆起源进化浅析[J].杂粮作物,2010,30(6):396-399.
    [3]李英惠,关荣霞,刘章雄,等.中国栽培大豆地方品种的遗传结构和多样性分析[J].理论应用遗传学,2008,117:857-871.
    [4]王连铮.大豆的起源演化和传播[J].大豆科学,1985,4(1):1-6.
    [5]汗越胜,盖钧镒.中国大豆品种生态区划分的修正.II.各区范围及主要品种类型[J].应用生态学报,2002,13(1):1-75.
    [6]Hymowitz T. On the domestication of the soybean[J]. Economic Botany.1970 (24):408-421.
    [7]梁建秋,张明荣,吴海英.大豆抗旱性研究进展[J].大豆科学,2010,29(2):341-345.
    [8]张海波.浅析大豆的营养价值及其加工利用[J].山西农业科学,2009,37(5):73-75.
    [9]中国科学院中国植物志编辑委员会编.中国植物志(第四十一卷豆科大豆属)[M].北京科学出版社,1995:233-238.
    [10]张禾.大豆的经济价值及栽培技术(上)[J].致富天地,1999,3:20.
    [11]周娜.大豆异黄酮人类健康[J].化学教育,2004,12:4-6.
    [12]王康成,蔡军.大豆异黄酮的生物学功能研究进展[J].2004,12(4):79-81.
    [13]张洪.中学教师实用地理辞典[M].北京:北京科学技术出版社.1989:81.
    [14]谷树忠.坡改梯的损益分析——以贵州省喀斯特地区为例[J].自然资源学报,1999,14(2):151-156.
    [15]周练川,陈效民.西南喀斯特地区典型石漠化阶段土壤水肥关系研究[J].南京农业大学学报,2011,34(2):97-100.
    [16]柴晓芳,郑伟,刘金和.施用不同有机肥对大豆根际土壤微生物数量的影响[J].磷肥复肥,2009,1:86.
    [17]吴皓琼,牛彦波,殷博,等.PGPR植物促生肥在大豆上应用效果研究[J].生物技术,2011,2(13):90-94.
    [18]宋继红,祝宝林,张英武.大豆壮根栽培复合应用微生物制剂的探讨[J].大豆通报,2000,3:11.
    [19]刘灵,廖红,王秀荣,等.磷有效性对大豆菌根侵染的调控及其根构型、磷效率的关系[J].应用生态学报,2008,19(3):564-568.
    [20]自朴,马建静.植物泡囊丛枝菌根及其应用展望[J].生态农业研究,2000,8(3):23-25.
    [21]蒙炎成,吕维莉.喀斯特地区大豆接种根瘤菌施钾肥对生物生产效率的影响[J].广西农业科学,2002,3:132-133.
    [22]赵士杰,李树林,王志强.VA菌根真菌对旱作春小麦抗旱性的影响[J].内蒙古农业大学学报,2004,25(4):43-46.
    [23]夏建国,李静.利用丛枝菌根真菌(AMF)提高植物抗旱性的研究进展[J].2005,2(21):326-329.
    [24]贺学礼.VA菌根对玉米和绿豆生长及抗旱性的影响[A].见:贺学礼.VA菌根接种效应及生态学研究[C].陕西杨凌:西北农业大学,1998:83-92.
    [25]王贤波.丛枝菌根(AM)的研究进展及展望[J].杭州农业科技,2007,2:19-21.
    [26]黄勤,唐振尧.柑桔VA菌根的研究进展[J].园艺学报,1994,21(1):47-53.
    [27]毕银丽.丛枝菌根培养新技术及其对土地复垦生态效应[M].地质出版社,2007,5:1-104.
    [28]刘润进,陈应龙.菌根学[M].北京:科学出版社.2007:447.
    [29]冯固,张福锁,李晓林,等.丛枝菌根真菌在农业生产中的作用调控[J].土壤学报,2010.47(5):995-1004.
    [30]常从云,卢增辉.接种根瘤菌菌根菌对大豆氮磷营养的影响[J].中国油料,1993,1:47-51.
    [31]陈锡时,华秀英,江小波.在不灭菌土壤条件下VA菌根对大豆生长的效应[J].土壤通报,1993,4(3):140-143.
    [32]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998:80-83.
    [33]Paola B, Andrea. Plants and arbuscular mycorrhizal fungi an evolutionary developmental perspective review[J]. Genre Article Trends in Plant Science,2008,13(9):492-498.
    [34]李晓林,周文龙,曹一平.VA菌根菌丝对土壤中磷的吸收[J].植物营养肥料学报,1994(1):195-203.
    [35]赵士杰,李树林.VA菌根促进青椒生长的生理研究[J].华北农学报,1994,9(1):81-86.
    [36]张俊伶,李晓林,杨志福.玉米根间菌丝桥对磷的传递作用初报[J].北京农业大学学报,1995(1):81-86.
    [37]张俊伶,李晓林,杨志福.三叶草问根问菌丝桥在32P传递中的作用[J].植物营养肥料学报,1997,3(2):129-136.
    [38]张俊伶,李晓林,左元梅.三叶草根间菌丝桥传递衰亡根系中磷的作用[J],生态学报,1998,18(6):589-594.
    [39]张俊伶,李晓林,杨志福.VA菌根的菌丝桥及其生态意义[J].世界农业,1996,11:37-40.
    [40]Read D J, Francis R, Finlay R D. Mycorrhizal mycelia and nutrient cycling in plant communities[C]. In:Fitter A.H.(Ed).Ecological Interactions in Soils. Oxford:Blackwell. 1985:193-217.
    [41]Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science,1996,161:575-586.
    [42]Rillig M C, Wright S F, Nichols K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soil[J]. Plant and Soil,2001,233:167-177.
    [43]田慧,刘晓蕾,盖京苹,等.球囊霉素及其作用研究进展[J].土壤通报,2009,5(40):1215-1220.
    [44]Vodnik D, Grman H, Maek I, et al. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science of the Total Environment,2008,392:130-136.
    [45]王琪,徐程杨.氮磷对植物光合作用及碳分配的影响[J].三栋林业科技,2005,5:63-66.
    [46]张可炜,王贤丽,王雷,等.低温对不同磷水平下玉米叶片几种光合作用相关的生理指标的影响[J].植物生理学通讯,2007,1(43):93-97.
    [47]Nemel S. Effects of soil phosphorus and glomus intraradices on growth, nonstructural carbohydrates, and photosynthetic activity of Citrus aurantium[J]. Plant and Soil,1990.257-262.
    [48]Yang X H, Luo X S, Liu R J. Influence of vesicular arbuscuar mycorrhizae on growth, yield and quality of watermelon[J]. Fruit Science,1994,11(2):117-119.
    [49]黄升谋.干旱对植物的伤害及植物的抗旱机制[J].安徽农业科学,2009,37(22):10370-10372.
    [50]刘青.丛枝菌根菌对玉米生理生态特性和农艺性状的影响研究[J].广西:广西大学,2008.
    [51]王幼珊,张美庆,王克宁.VAM真菌在草莓和番茄上的接种效应[J].中国农业大学学报,1997,2(增刊):70-73.
    [52]魏娜,贾钧彦,蔡晓布,等.AM真菌植物的抗旱性[J].西藏科技,2008,8:67-71.
    [53]Morte Asuncion, et al Effect of drought stress on growth and water relations of the mycorrhizal association[C]. In: Ulla. A.J.(eds).2nd Intl. Conf on Mycor. Uppeala, Sweden,1998.123.
    [54]张旭红,王幼珊,王殿武.丛枝菌根真菌对大豆不同水分条件的适应性研究[J].河北农业大学学报,2003,3(26):40-45.
    [55]Duan X V. Mycorrhizal influence on hydmnlic and hormonal factors implicated in the control of stmatal conductance during drought[J]. Journal of Experimental Botany,1996,47(303): 1541-1550.
    [56]袁丽环,闫桂琴.VA菌根对植物抗性的影响研究进展[J].科学情报开发经济,2007,17(11):172-174.
    [57]王毅,杨宏福,李树德.园艺植物冷害和抗冷性的研究——文献综述[J].园艺学报,1994,21(3):239-244.
    [58]闫妍,孙超,于贤昌,等.低温胁迫对接种丛枝菌根真菌番茄幼苗生理特性的影响[J].中国农业大学学报,2011,16(6):64-69.
    [59]赵士杰,李树林.VA菌根促进韭菜增产的生理基础研究.土壤肥料,1993,(4):38-40.
    [60]Reki I A, Gupta K V. Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress[J]. Mycorrhiza,1996(6):145-149.
    [61]李敏,辛华,郭绍霞,等.AM真菌对盐渍土中番茄,辣椒生长和矿质养分吸收的影响[J].莱阳农学院学报,2005,22(1):38-41.
    [62]Rulz-Lozano J M, Azcon R, Gomez M. Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants[J]. Physiologi Plantarum,1996,98:767-772.
    [63]冯固,李晓林,张福锁,等.施磷和接种AM真菌对玉米耐盐性的影响[J].植物资源环境学报,2000,9(2):22-26.
    [64]黄金芳,肖华山.VA菌根对植物有益作用的研究进展及其应用展望[J].植物医院,2009,10:27-29.
    [65]唐明.菌根真菌提高植物耐盐性[M].北京:科学出版社.2010:185.
    [66]Bradley R, Biry A J, Read D J. Mycorrhizal infection and resisance to heavy metal toxicity in Calluna vulgaris[J]. Nature,1981,292:335-337.
    [67]Vivasa, Biro B, Ruiz-lozanom J, et al. Two bceteial sframins isolated from a Znpouuted soil enhamce plant growth and mycorrhizol efficiency under Zntoxity[J]. Chemosphere,2006, 62(9):1523-1533.
    [68]Rivera-becerrilf, Calantzisc, Turnauk, et al. Cadmium accumulation and buffering of cadmiumin-duced stress by arbuscular mycorrhiza in three Pisum sativumL. genotypes[J]. Journal of Experimental Botany,2002,53(371):1177-1185.
    [69]Turjamanm M, Tamai Y, Santoso E, et al. Arbuscular mycorrhiza fungi increased early growth of two nontmi before stproduct species Dyerapolyphylla and Aquilaria filaria under greenhouse conditions [J]. Mycorrhiza,2006,16(5):371-379.
    [70]Reynolds H L, Vogelsang K M, Hartley A E, et al. Variable responses of old field perennials to arbuscular mycorrhizal fungi and phosphorus source[J]. Oecologia,2006, 147(2):348-358.
    [71]Tylka G L, Hssey R S, Romcadori R W. Interactions of vesicular-arbuscular mycorrhizal fungi phosphorus and Heterodera glycies on soybean [J]. Journat of Nematology,1991,23(1):122-133.
    [72]贺学礼,高露,赵丽莉.水分胁迫下丛植菌根AM真菌对民勤绢蒿生长抗旱性的影响[J].生态学报,2011,31(4):1029-1037.
    [73]Granham J H. Water relations of mycorrhizal and phosphorus fertilized nonmycorrhizal citrus under drought stress[J]. New Phytol,1987,105:411-419.
    [74]唐明,陈辉,商鸿生.丛枝菌根真菌(AMF)对沙棘抗旱性的影响.林业科学,1999,35(3):48-52.
    [75]熊丙全.丛枝菌根真菌对葡萄苗木生长及其抗旱效应影响的研究[D].重庆:西南农业大学.2005
    [76]崔德杰,王维华,袁玉清.AM菌提高植物抗旱性机制的初步研究[J].莱阳农学院学报,1998,15(3):167-171.
    [77]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000.1-7.
    [78]贺学礼,李生秀.不同VA菌根真菌对玉米生长及抗旱性的影响[J].西北农业大学学报,1999,27(6):49-53.
    [79]Murakami-Mizukann Y, Yamamoto Y, et al. Analysis of indole acid and abscisic acid content in nodule of soybean plants bearing VA mycorrhizas. Soil Science and Plant Nutrition(Tokyo), 1991,37:291-298.
    [80]赵平娟.丛枝菌根真菌对连翘幼苗抗旱性的影响[J].西北植物学报,2007,2(27):396-399.
    [81]徐淑君.丛枝菌根真菌对猕猴桃高温干旱抗性研究[D].重庆:西南大学.2008.
    [82]Subramanian K S, Charest C, Dwger L W, et al. Effects of arbuscular mycorrhizae on leaf water potential,sugar,and P content during drought and recovery of maize[J]. Canadian Journal of Botany,1997, (75):1582-1591.
    [83]Qu T, Nan Z B. Research progress on responses and mechanisms of crop and grass under drought stress[J]. Acta Prataculturae Sinica,2008,17(2):126-135.
    [84]贺学礼,张焕仕,赵丽莉.不同土壤中水分胁迫和AM真菌对油蒿抗旱性的影响[J].植物生态学报,2008,32(5):994-1001.
    [85]赵金莉,贺学礼.AM真菌对油蒿生长和抗旱性的影响[J].华北农学报,2007,22(5):994-1001.
    [86]Green C D, Stodola A, Auge R M. Transpiration of detached leaves form mycorrhizal and nonmycorrhizal cowpea and rose plants given varying abscisic acid pH calcium and phosphorus[J]. Mycorrhiza,1998,8:92-99.
    [87]Subramanian K S, Charest C. Influence of arbuscular mycorrhizae on themetabolism ofmaize under drought stress[J]. Mycorrhiza,1995,5:273-278.
    [88]Gemma J N, Koske R E, Roberts E M, et al. Mycorrhizal fungi improve drought resistance in creeping bentgrass[J]. Journal of Turfgrass Science,1997,73:15-29.
    [89]Davies F T, Potter J R, Linderman R G. Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration-response in gas exchange and water relations[J]. Plant Physiology.1993,87:45-53.
    [90]Mathur N, Vyas A. Influence of VAM on net photosynthesis and transpiration of Ziziphus mauritiana[J]. Journal of Plant Physiology,1995,147:328-330.
    [91]Li X L, Marschner H, George H. Acqyisition of phosphorus and copper byVA mycorrhizal haphae and root-to-shoot transport in white clover[J]. Plant and Soil,1991,136:49-57.
    [92]弓明钦,徐大平,仲崇禄,等.菌根生物多样性及其应用研究[M].中国林业出版社.2000,51-61.
    [93]刘藜.VA真菌对木豆,银合欢苗期生长及抗旱效应的研究[D].贵州:贵州大学,2006.
    [94]何跃军,钟章成,刘济明,等.构树幼苗对接种丛枝菌根真菌的生长效应[J].应用生态学报,2007,10(18):2209-2213.
    [95]向旭,赵洪,邓功成.黔南喀斯特次生灌丛群落菌根调查[J].安徽农业科学,2009,37(19):9073-9074.
    [96]杨海洋,陈建宏,刘雯,等.菌根技术在喀斯特岩溶矿区生态恢复中的应用[J].中南林业科技大学学报,2010,30(1):84-89.
    [97]张玲,冉成玺.VA菌根培养土的化学灭菌法的研究[J].锦阳农专学报,1989,6(2):24-27.
    [98]郭屹立,王磊,丁圣彦.干旱处理对大豆光合生理特性及生物量的影响[J].中山大学研究生学刊,2009,30(1):25-33.
    [99]Trouvelot A, Kough J L, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methods d'estimation ayant une signification fonctionnelle. In:Physiological and Genetical Aspects of Mycorrhizae, V. Gianinazzi-Pearson and S.Gianinazzi(des.)[C]. National Institute for Agricultural Research Press, Paris, pp.1986:217-221.
    [100]张翅.番茄丛枝菌根真菌共生效应的研究[D].武汉:华中农业大学,2006.
    [101]冯海艳,冯固,王敬国,等.植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控[J].菌物系统,2003,22(4):589-598.
    [102]刘萍,李明辉.21世纪生物学基础课系列实验教材(植物生理学实验技术)[M].北京:科学出版社,2007:211.
    [103]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000:23-28.
    [104]Beauchamp C, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry.1971,44:276-287.
    [105]王学奎.植物生理生化实验原理和技术(第2版)[M].北京:高等教育出版社,2006:298.
    [106]张志良.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2004:425.
    [107]刘亚丽,赵喜婷.教学实验中硝酸还原酶活性测定方法的改进[J].植物生理学通讯,2006,3(42):502.
    [108]高蕾,刘丽君,董守坤,等.干旱胁迫下大豆幼苗叶片生理生化特性的影响[J].东北农业大学学报,2009,40(8):1-4.
    [109]高中超,周宝库,张喜林.大豆对干旱胁迫生理生化的响应[J].大豆通报,2007,5:27-30.
    [110]辛国荣.水分胁迫下植物乙烯、脯氨酸的积累、气孔反映的研究现状[J].草业科学,1997,1 4(2):62-66.
    [111]金先庆,张渝洁.脯氨酸在植物生长和非生物胁迫耐受中的作用[J].生物技术通讯,2007,18(1):159-162.
    [112]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,4(1):46-50.
    [113]郭数进,李贵全.大豆生理指标抗旱性关系的研究[J].河南农业科学,2009,6:38-41.
    [114]陈世苹,高玉葆,梁宇,等.水分胁迫下内生真菌感染黑麦草叶内游离脯氨酸和脱落酸含量的影响[J].生态学报,2001,21(12):1964-1972.
    [115]刘润进,李晓林.丛枝菌根及其应用[M].科学出版社,2000:1-224.
    [116]Tang Z C. Under the conditions of adversity proline accumulation and its possible significance[J]. Plant Physiology Communications,1984,1:15-21.
    [117]费伟,陈火英,曹忠,等.盐胁迫对番茄幼苗生理特性的影响[J].上海交通大学学报(农业科学版),2005,23(1):5-9.
    [118]Cote B, Vogel C S, Dawson O. Autumnal Changes in tissue nitrogen of autumn olive, black alder and eastern cottonwood [J]. Plant and Soil,1989,188:23-32.
    [119]Zhao Y, Ma Y Q, Weng Y J. Variation of betaine and proline contents in wheat seedlings under salt stress[J]. Journal of Plant Physiology and Molecular Biology,2005,31(1):103-106.
    [120]杨丹慧.重金属离子对高等植物光合膜结构功能的影响[J].植物学通报,1981,(3):2629.
    [121]王元贞,柯玉琴,潘廷国.不同类型菌根菌对烟草幼苗生理代谢的影响.应用生态学报[J].2002,13(1):87-90.
    [122]金永焕,李敦求,姜好相.不同土壤水分对赤松光合作用水分利用效率的影响研究[J].中国生态农业学报,2007,15(1):71-74.
    [123]张明生,谢波,谈峰,等.甘薯可溶性蛋白、叶绿素及ATP含量变化品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [124]刘玲玲,李军,李长辉,等.马铃薯可溶性蛋白、叶绿素及ATP含量变化品种抗旱性关系的研究[J].中国马铃薯,2004,4(18):201-204.