超高韧性水泥基复合材料梁柱节点的低周往复试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梁柱节点是框架结构中的一个薄弱构件,且在地震作用下节点破坏的模式对结构整体破坏模式有着重要的影响。而遵照“强柱弱梁”等原则按规范进行严格抗震设计的梁柱节点,其钢筋纵横交错,施工极为困难,而且混凝土浇筑后不易振捣,工程质量难以得到保证。
     有学者将钢纤维混凝土应用于节点,取得了一定的成果。而超高韧性水泥基复合材料(UHTCC)是一种纤维体积掺量在2%以下的纤维增强复合材料,具有准应变硬化特性,变形能力较好,且在单轴拉伸作用下具有多缝开裂特性。为简化梁柱节点的抗震设计提供了一个新的选择方案。
     为了研究UHTCC材料代替部分箍筋应用于钢筋混凝土框架节点处的可行性,本文针对9个不同的全尺寸钢筋混凝土框架梁柱节点试件进行了低周往复加载试验。试验设计的研究参数有轴压比,UHTCC的使用区域,节点核心区体积配箍率,梁端箍筋加密区的箍筋间距等。
     在9个试件中,有3个是完全由传统混凝土浇制而成,并按照我国相关规范经过严格的计算合理配置纵筋和箍筋。另外6个试件则是在梁柱节点核心区及附近用UHTCC代替传统混凝土,减少了梁端箍筋的配置,且在梁柱节点核心区的箍筋也有所减少甚至未在节点核心区配置箍筋,以考察UHTCC是否能够代替部分箍筋的作用承担剪力,甚至对构件抗震性能有所改善。
     在实验结束后,对各个试件的滞回曲线、骨架曲线、刚度退化、能量耗散等相关数据和指标进行处理分析和比较,结果发现UHTCC试件即使在配箍减少的情况下,依然能够稳定承受低周往复荷载作用,且其极限承载力与普通混凝土试件相比有所提高。UHTCC试件的刚度退化过程也保持基本稳定,而且其节点核心区的变形能力较普通混凝土试件更好,其在单个荷载循环内的总耗能也普遍高于混凝土试件。
The beam-column connection is a vulnerable element in the reinforced concrete frames. And the failure mode of the joints does have significant influences on the sidesway mechanism of the entire building under earthquake. However, if the beam-column connections were fully designed and detailed according to the "strong column-weak beam" principle to withstand seismic actions, the longitudinal and transverse reinforcements would cross with each other. This would make the construction work extremely hard. What's more, due to the congestion of the reinforcement in the beam-column joint region, it is more difficult to place and consolidate the concrete, therefore the quality of the whole construction cannot be guaranteed.
     It is reported that steel fiber reinforced concrete was used in the joint region and certain results were achieved by some researchers. In recent years, a kind of innovative fiber reinforced cement-based composite draws intensive attention, which is called ultrahigh toughness cementitious composite (UHTCC). UHTCC is a type of composite containing about2%volume fraction of short fibers, with properties such as pseudo strain hardening, superior deformation capacity and multiple cracking behaviors under uniaxial tensile loading, which promises an alternative for seismic design of structures.
     In this paper,9specimens of full-scale beam-column joints with different designs were tested under the earthquake-type reversed cyclic loading, in order to investigate the feasibility of reducing the transverse reinforcement in the beam-column connections by using UHTCC. The parameters to be researched in the whole experiment program include axial load ratio, the area where UHTCC was used, the stirrup ratio in the joint core and the stirrup spacing in the stirrup densification area of the beams.
     Of the total9specimens,3were made of common concrete, which are strictly designed according to the current codes in China. In the other6beam-column connections, UHTCC was used in the joint core region, as well as parts of nearby columns and beams. And in order to examine whether the UHTCC material could bear the shearing force instead of partial transverse reinforcement, or even improve the seismic-resistance performance of the structure element, less or even no stirrups were used in the joint core and nearby region.
     After the experiment, the hysteresis property, spine curve, stiffness degradation and the energy dissipation property of the9specimens was presented, analyzed and compared. It is noted that, the specimens with UHTCC, even though with less stirrups, still could undertake the reversed cyclic loading steadily. Moreover the ultimate bearing capacity of the UHTCC specimens was apparently higher than the normal concrete ones. The stiffness degradation process of the UHTCC specimens is basically stable, and the deformation performance of the UHTCC joints is better than that of the normal concrete ones. Besides, higher energy dissipation is obtained in the UHTCC specimens, too.
引文
[1]郭继武,倪吉昌.钢筋混凝土框架结构抗震设计[M].北京:中国建筑工业出版社,1988.
    [2]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989.
    [3]Recommendations for design of beam-column connections in monolithic reinforced concrete structures[R]. ACI-ASCE Committee 352,2002.
    [4]吴涛,刘伯权,邢国华.钢筋混凝土框架变梁异型节点抗震[M].北京:科学出版社,2010.
    [5]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [6]叶列平,曲哲,马千里,等.从汶川地震中框架结构震害谈“强柱弱梁”屈服机制的实现[J].建筑结构.2008,38(11):52-59.
    [7]HAKUTO S, PARK R, TANAKA H. Seismic load tests on interior and exterior.beam-column joints with substandard reinforcing details[J]. ACI Structural Journal.2000,97(1): 11-25.
    [8]DURRANI A J, WIGHT J K. Behavior of interior beam-to-column connections under earthquake-type loading [J]. Journal of the American Concrete Institute.1985,82(3): 343-349.
    [9]徐至钧.纤维混凝土技术及应用[M].北京:中国建筑工业出版社,2003.
    [10]SHANNAG M J, ABU-DYYA N, ABU-FARSAKH G. Lateral load response of high performance fiber reinforced concrete beam-column joints [J]. Construction and Building Materials.2005, 19(7):500-508.
    [11]BAYASI Z, GEBMAN M. Reduction of lateral reinforcement in seismic beam-column connection via application of steel fibers[J]. ACI Structural Journal.2002,99(6): 772-780.
    [12]FILIATRAULT A, LADICANI K, MASSICOTTE B. Seismic performance of code-designed fiber reinforced concrete joints[J]. ACI structural journal.1994,91(5):564-571.
    [13]FILIATRAULT A,-PINEAU S, HOUDE J. Seismic behavior of steel-fiber reinforced concrete interior beam-column joints[J]. ACI Structural journal.1995,92(5):543-552.
    [14]GEFKEN P R, RAMEY M R. Increased joint hoop spacing in type 2 seismic joints using fiber reinforced concrete[J]. ACI Structural Journal.1989,86(2):168-172.
    [15]章文纲,程铁生.钢纤维砼框架节点抗震性能的研究[J].建筑结构学报.1989,1(5):35-45.
    [16]郑七振,魏林.钢纤维混凝土框架节点抗剪承载力的试验研究与机理分析[J].土木工程学报.2005,38(009):89-93.
    [17]王铁成,张小鹏,赵海龙,等.纤维增强混凝土十字形柱中节点试验研究[J].地震工程与工程振动.2011(6):92-97.
    [18]LI V C. On engineered cementitious composites (ECC)[J]. Journal of advanced concrete technology.2003,1(3):215-230.
    [19]PARRA-MONTESINOS G J, PETERFREUND S W, CHAO S H. Highly damage-tolerant beam-column joints through use of high-performance fiber-reinforced cement composites[J]. ACI Structural Journal.2005,102(3):487-495.
    [20]徐世娘,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报.2008(6):45-60.
    [21]LI V C. Integrated structures and materials design[J]. Materials and Structures.2007, 40(4):387-396.
    [22]LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics.1992,118:2246-2264.
    [23]LI V C, WU C, WANG S, et al. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal-American Concrete Institute.2002,99(5):463-472.
    [24]公成旭,张君.高韧性纤维增强水泥基复合材料的抗拉性能[J].水利学报.2008,39(3):361-366.
    [25]丁一,陈小兵,李荣.ECC材料的研究进展与应用[J].建筑结构.2007,37(1):94-98.
    [26]FISCHER G, LI V C. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites (ECC) [J]. ACI Structural journal. 2002,99(1):104-111.
    [27]徐世娘,王洪昌.超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J].工程力学.2008,25(11):53-61.
    [28]FISCHER G, LI V C. Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal.2002,99(6):781-790.
    [29]PARRA-MONTESINOS G, WIGHT J K. Seismic response of exterior RC column-to-steel beam connections[J]. Journal of structural engineering.2000,126(10):1113-1121.
    [30]PARRA-MONTESINOS G J. High-performance fiber-reinforced cement composites:an alternative for seismic design of structures [J]. ACI Structural Journal.2005,102(5): 668-675.
    [31]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002)[S].北京,2002.
    [32]中华人民共和国建设部.建筑抗震设计规范(GB50011-2001)[S].北京,2001.
    [33]胡庆昌,徐云扉,陈玉峰.低周反复荷载下钢筋混凝土框架梁柱节点核心区的受力性能[J].建筑结构.1982,14-19(4).
    [34]苏骏,徐世娘.高轴压比下UHTCC梁柱节点抗震性能试验[J].华中科技大学学报:自然科学版.2010,38(7):53-56.
    [35]XU S L, HOU L J, ZHANG X F. Flexural and shear behaviors of reinforced ultrahigh toughness cementitious composite beams without web reinforcement under concentrated load[J]. Engineering Structures.2012,39:176-186.
    [36]侯利军,张秀芳,徐世娘.拉伸应变硬化UHTCC材料的弯曲变形分析[J].工程力学.2011,8.
    [37]LIU C. Seismic behaviour of beam-column joint subassemblies reinforced with steel fibres[D]. Christchurch:University of Canterbury,2006.
    [38]吕西林,郭子雄,王亚勇.RC框架梁柱组合件抗震性能试验研究[J].建筑结构学报.2001,22(1):2-7.
    [39]戴国莹,王亚勇.房屋建筑抗震设计[M].北京:中国建筑工业出版社,2005:385.
    [40]徐钟彬.梁端钢纤维混凝土塑性铰梁柱节点抗震性能研究[D].上海:同济大学,2006.
    [41]中国建筑工业出版社.建筑抗震试验方法规程(JGJ101-96)[S].北京,1996.
    [42]刘阳,郭子雄,黄群贤.不同构造形式的CSRC节点变形性能试验研究[J].工程力学.2010(10):173-181.
    [43]GANESAN N, INDIRA P V, ABRAHAM R. Steel fibre reinforced high performance concrete beam-column joints subjected to cyclic loading[J]. ISET Journal of Earthquake Technology.2007,44(3-4):445-456.
    [44]陈勇.型钢混凝土梁柱节点低周反复荷载下的抗震性能试验及理论研究[D].长沙:湖南大学,2005.
    [45]郑清.采用梁混凝土浇筑的框架节点在低周反复荷载作用下的试验研究与分析[D].重庆:重庆大学,2006.
    [46]傅剑平.钢筋混凝土框架节点抗震性能与设计方法研究[D].重庆:重庆大学,2002.
    [47]闫长旺.钢骨超高强混凝土框架节点抗震性能研究[D].大连:大连理工大学,2009.
    [48]刘士润.低周反复荷载作用下穿透式钢管混凝土节点力学性能研究[D].大连:大连理工大学,2011.
    [49]王玉雷.低周反复荷载作用下混凝土框架边节点性能试验研究[D].哈尔滨:哈尔滨工业大学,2010.
    [50]王健.翼缘板加强型节点低周反复荷载试验研究[D].青岛:青岛理工大学,2010.
    [51]陈庆军,蔡健,杨平,等.节点区柱钢管不贯通式钢管混凝土柱-梁节点抗震性能[J].土木工程学报.2009,42(12):33-42.