用户名: 密码: 验证码:
中国东部若干入海河流水化学特征与入海通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流水体水化学特征不仅可以反映流域岩石化学风化的强弱和类型,其在一定程度上还能反映水体的环境质量状况;而岩石化学风化作用是研究海陆物质循环和全球气候变化的重要环节。基于此,论文主要研究内容包括4大部分:一,探讨了中国东部主要入海河流水化学特征,通过河流水化学特征分析了其主要的控制因素,讨论了流域岩石的主要岩石风化类型;二,对长江流域从其干流、支流、河口、湖泊、水库以及流域降水的水化学特征入手,分析了其间的差异,探讨了他们水化学特征之间的影响与关联,估算了大气降水对主要离子的贡献率,计算了化学风化率与大气二氧化碳消耗量;三,通过近年来长江河口水化学组分观测,分析了近年来长江水化学组分与入海通量的变化趋势及其影响因素,并结合水文年鉴上收集到的相关数据,探讨了长江近50年来水化学特征与入海通量的变化趋势,并用河流水质演化概念模式(Meybeck)对其现阶段及未来水质变化进行了分析;四,结合各大河流水文资料,从已有的水化学资料入手,对各大海区输入河流溶解质和DIC输送通量进行了估算。具体获得如下一些初步认识:
     (1)黄河、海河、滦河水体矿化度很高,约为世界河流平均矿化度的3~6倍,其水化学组成以Na~+、Ca~(2+)、Cl~-、SO_4~(2-)和HCO_3~-为主,主要受蒸发岩风化和人类活动影响;鸭绿江受降雨充沛、植被发育的影响,风化作用较弱,水体矿化度与世界平均水平相当;长江水体矿化度为世界河流平均矿化度的2倍之多,主要化学组成以Ca~(2+)、SO_4~(2-)和HCO_3~-为主,是典型的碳酸盐风化类型,沿江工农业污染对长江河水化学组成影响较大,主要对SO_4~(2-)和TN;浙江沿海河流,钱塘江水体矿化度略高于世界平均水平,低于长江,灵江和瓯江水体矿化度低于世界平均水平,而椒江、甬江和鳌江水体矿化度变化复杂,变化幅度大,可能是外来溶解态物质的影响;大气降水对浙江沿海河流水体中Na~+和Cl~-的贡献率较高,岩石风化则以硅酸盐风化为主,浙江沿海河流化学风化率均高于世界平均水平,且各大河流均有差异,其主要因素是地势起伏和人类活动,其次可能是森林覆盖率、耕地面积比率和水土流失比率;浙江诸河每年平均消耗大气CO_2约26.69×10~6mol;海南诸河属降水控制类型,由于全岛降雨量大,河水矿化度远低于世界平均水平,大气降水对河流水体中SO_4~(2-)、Na~+和Cl~-的贡献率较高;全岛岩石以硅酸盐风化为主。据估算,南渡江流域化学风化率与万泉河流域相当,高于世界平均水平,南渡江CO_2消耗总量约为万泉河流域的7.5倍,占全岛二氧化碳消耗总量的60.52%。
     (2)长江上游水库水体矿化度远高于长江干流,主要受蒸发浓缩作用控制,长江河口、洞庭湖、鄱阳湖水体矿化度均小于长江干流,由于洞庭湖受矿化度较小的地下水补给,据估算,2008年1月,东洞庭湖地下水补给量最大,达7.35×10~8m~3,其次是西洞庭,达2.79×10~8m~3,南洞庭地下水补给量为1.36×10~8m~3,其补给量大小与湖泊各区分布的面积相关;长江干流SO_4~(2-)浓度从上至下有逐渐增加的趋势,主要受到工业污染排放影响,TN与Cl~-浓度也有相同变化趋势,但分别受到农业活动与循环盐的贡献,大气降水对长江上游和下游水体贡献率大于中游;海盐校正后,计算得到长江流域化学风化率和大气二氧化碳消耗总量,研究发现:长江流域各分区化学风化率均高于世界平均水平,且上游强于下游,最小为中游;大气CO_2消耗量则是中游大于上游,下游最小,分别为上游达338.23×10~9mol/yr,中游为385.79×10~9mol/yr,下游为223.24×10~9mol/yr,长江全流域CO_2消耗总量占世界河流CO_2消耗总量的4.5%;各支流化学风化率表现为上游强于下游,最小为中游;支流中CO_2消耗量最少的为江西修水,赣江次之;
     (3)长江河口水体主要离了浓度与径流呈现很好负相关关系,季节变化明显,但主离子浓度季节差异小于径流量的季节差异;河口水体中K~+,Na~+,Ca~(2+),Mg~(2+),Cl~-,SO_4~(2-),NO_3~-,总硬度/总碱度有上升趋势,尤其以SO_4~(2-)和总硬度/总碱度的上升趋势显著,SiO_3~(2-),HCO_3~-则表现出下降趋势。引起近年来长江口水体主离子浓度变化的影响因素为工业排放、环境酸化、循环盐和三峡蓄水。近年来入海溶解质量有减少趋势,DIC输送量基本没有变化;近五十年来长江水体SiO_3~(2-)、HCO_3~-浓度下降,NO_3~-、SO_4~(2-)浓度上升,入海径流量50年来变化不明显,TN输送量呈现较为明显的增加趋势,DIC输送量整体上呈现减少趋势,但变化很小,入海SiO_3~(2-)总量呈现递减趋势。
     (4)我国河流水体矿化度北部和中部大多高于世界河流平均水平,整体表现出往南有偏小的趋势;化学风化率则表现为北部最小,南部其次,中部最大;长江流域CO_2消耗率最高,海南岛各河流流域最小,前者为后者的10倍之多;中国东部河流流域每年消耗大气CO_2总量为1569.5×10~9mol/yr,约占世界总量的7.47%。据估算,每年输入黄海、渤海、东海、南海的总水量达15923×10~8m~3,入海沙量达17463.6万吨,入海总溶解质量达263.95×10~6t,入海DIC量达127.45×10~6t,但各海区分配比例不一致,基本上入海水量、溶解质量、DIC量分配比例较为一致,而沙量分配比例则不同。
The hydro-chemical characteristics is not only a manifestation of the extent and the style of the chemical weathering,but also a reflection of environmental quality status of water body;The chemical weathering is a very important part of material geochemistry cycle and the global climate change.Basin on that,there are four part in this thesis,the first,it discuss the hydro-chemical characteristics of the rivers in the east of China, analyses the affection factor and the main style of chemical weathering;the second,it shows the differences of hydro-chemical characteristics about the given main-channel, the branches,the estuary,the lake,the reservoir and the rain water in Yangtze river basin, analyses the affection and the connection.Basin on the concentration of main ions about the given main-channel,the branches and the rain water,we estimated the contribution of the rain water to the given main-channel and the branches.From the PCA result and the contribution of the rain water,we calculate the chemical weathering rate and CO_2 consumption;the third,it analyses the changes of hydro-chemical characteristics and the flux of Yangtze river in recent years and last 50 years;the fourth,it estimates the flux of rivers transport to the seas.The following conclusions have been drawn:
     (1)Yellow River,Hai River,Luan River have a high TDS,they are the 3~6 times than the mean value of the world rivers,the major ions are Na~+、Ca~(2+)、Cl~-、SO_4~(2-) and HCO_3~-,the evaporate weathering and the human activities are the main affection;Yalv River has the weak weathering and the equivalent TDS with the mean value of the World Rivers,that effected by enough rainfall and the luxuriated plant;the TDS of Yangtze River is 2 times more than the mean value of the world rivers,the major ions are Ca~(2+)、SO_4~(2-) and HCO_3~-,carbonate weathering is the main type in this basin,except that,the concentration of SO_4~(2-) and TN is effected by the pollution of industry and agriculture;the river in Zhejiang Province,the TDS of Qiantang River is a litter higher than the the mean value of the world rivers,but it lower than Yangtze River,Ling River and Ou River both lower than the mean value of the world rivers,the concentration of TDS in Jiao River, Yong River and Ao River have a large changes extent,and the changes is complicated, the possible reason is that they have a variable adventitious dissolved matter.The contribution of the rain water is important,especially for the Na~+ and Cl~-,in their basins, silicate weathering is the main style,the seven Rivers have different CDR,and the effects for it are human activities and geology element,then with the forest coverage rate,plough area and the PDR.It is estimated that there is 26.69×10~6mol CO_2 consumed;the rivers in Hainan Province is controlled by the rainfall,they have low TDS concentration.The contribution of the rain water is high,especially the SO_4~(2-)、Na~+ and Cl~-.Silicate weathering is the main style.In Hainan Island,the CDR in Wanquan River basin and Nandu River basin are stronger than the average in the whole island,the both have litter difference.The CO_2 consumption in Nandu River basin is 7.5 times than Wanquan River basin,its proportion in the whole island is 60.52%.
     (2)The TDS of the reservoir is higher than the given main-channel,but the branches, the estuary and the lakes are lower than the given main-channel,it is because that the Dongting Lake has a contribution from Groundwater with a low TDS.It is estimated that there are 7.35×10~8m~3 groundwater to the east Dongting Lake,about 2.79×10~8m~3 groundwater to the west Dongting Lake,about 1.36×10~8m~3 groundwater to the south Dongting Lake,×10~8m~3,the supplied quantity is related to the area;the concentration of SO_4~(2-) has a increasing trend from up to down in downstream,it is effected by the pollution of industry,the concentration of TN and Cl~- have the same trend,they effected by agriculture pollution and circulation salt respectively,the contribution of the rain water in upstream and downstream is bigger than the mid-stream,rectify the concentration of the main ions,we calculate the chemical weathering rate and CO_2 consumption in Yangtze River basin:the chemical weathering rate stronger than the average of the world in the whole river basin,the upstream basin is stronger than the downstream basin and the weakest is mid-stream basin.The CO_2 consumption in upstream basin is 338.23×10~9mol/yr,the mid-stream basin is 385.79×10~9mol/yr,the downstream basin is 223.24×10~9mol/yr.Yangtze River basin,its proportion in the world is 4.5%.The chemical weathering rate in all branches have the same result,in upstream is stronger than the downstream,and the weakest is the mid-stream;
     (3)The concentration of main ions varies clearly in different seasons,but the difference is less clearly than the discharge;there is a persistently increasing trend has been observed in the concentrations of K~+,Na~+,Ca~(2+),Mg~(2+),Cl~-,NO_3~-,SO_4~(2-) and the ratio of hardness/ alkalinity,especially the concentration of SO_4~(2-) and the ratio of hardness/alkalinity have a more obvious increasing trend;in contrast the concentration of SiO_3~(2-) and HCO_3~- show a decreasing trend.The changes of major ions mainly result from the environment acidification,the pollution emissions by human,the cyclic salt from sea and the preserved effect by reservoirs establishments etc.in recent years,the Flux of the total dissolved solutes has a decreasing trend,the flux of DIC has little changes;in last 50 years,the concentration of SiO_3~(2-)and HCO_3~- have decreasing trend,but NO_3~- and SO_4~(2-) have increasing trend,the discharge has no obvious changes,the flux of TN has obvious increasing trend,but the flux of DIC and the SiO_3~(2-) show a decreasing trend.
     (4)The total dissolved concentration of rivers in East China has a decreasing trend from north to south.In north and mid-part,there are most of rivers have a higher TDS than the average value of the world.The CDR in north is weakest,and then is the south, the middle is strongest.The CO_2 consumed is about 1569.5×10~9mol/yr in East China.It is estimated that,the seas(The East Sea,The Yellow Sea,The South Sea and The Bo Sea) accept the water from the rivers is about 15923×10~8m~3,the total solid mass is about 17463.6×10~4t,the total dissolved solutes is about 127.45×10~6t,but the distribution to the four sea is inequable,but the distribution proportion of discharge,the total dissolved solutes,the quantity of DIC in each sea are similar,the total solid mass is different.
引文
1.柴超,俞志明,宋秀贤,沈志良.三峡工程蓄水前后长江口水域营养盐结构及限制特征.环境科学,2007,28(1):64-69.
    2.陈骏,杨杰东,李春雷.大陆风化与全球气候变化.地球科学进展,2001,16(3):399-405.
    3.陈静生,陈梅.海南岛河流主要离子化学特征和起源.热带海洋,1992,12(3):272-281.
    4.陈静生,陈梅,谢贵柏.海南岛台湾岛河流水化学比较研究.地理学报,1992 47(5):403-409.
    5.陈静生,关文荣,夏星辉等.长江中、上游水质变化趋势与环境酸化关心初探.环境科学学报,1998,18(3):265-270.
    6.陈静生,夏星辉,张利田.长江、黄河、松花江的60-90年代水质变化趋势与社会经济发展的关系.环境科学学报,1999,19(5):500-505.
    7.陈静生,何大伟,珠江水系河水主要离子化学特征及成因,北京大学学报,1999,35:786-793.
    8.陈静生,李荷碧,夏星辉.近30年来黄河水质变化趋势及原因分析.环境化学,2000,19(2):97-101.
    9.陈静生,夏星辉,洪松.长江水质酸化与黄河水质浓化趋势及成因探讨.中国工程科学,2000,2(3):54-58.
    10.陈静生.河流水质原理及中国河流水质,2006,科学出版社(北京).
    11.陈振楼,许世远,柳林,余佳,俞立中.上海滨岸潮滩沉积物重金属元素的空间分布与累积.地理学报,2000,55(6):641-651.
    12.邓伟,长江河源区水化学基本特征的研究,地理科学,1988,8(4):363-369.
    13.杜光智,黄晓华,黄霞,宋国强.湖北省酸雨的时空分布规律及成因分忻.长江流域资源与环境,2003,12(4):377-381.
    14.冯士莋,李凤岐,李少菁.海洋科学导论.1999,北京:高等教育出版社,439-443.
    15.高全洲,沈承德,孙彦敏.珠江流域的化学侵蚀,地球化学,2001,30:223-230.
    16.付金沐,刘敏,侯立军,欧冬妮,刘巧梅.长江口滨岸排污活动对潮滩营养盐环境地球化学过程的影响.环境科学,2007,28(2):315-321.
    17.甘晓春,李惠民.1995.浙西南早元古代花岗质岩石的年代.岩石矿物学杂志,14(1):1-8.
    18.过常龄,黄河流域河流水化学特征初步分析,地理研究,1987,6(3):65-73.
    19.韩贵琳,刘丛强.贵州乌江水系的水文地球化学研究.中国岩溶,2000,19(1):35-43.
    20.洪大卫.郭文岐,李戈晶,等.1987.福建沿海晶洞花岗岩带的岩石学和成因演化.北京:北京科学技术出版社,1-132.
    21.胡细英.赣江流域水文地理特征及影响经济发展的研究.江西师范大学学报(自然科学版),1993,17(1):66-710.
    22.胡雄健,许金坤,康海男,等.1991.浙西南下元古界八都群的地质特征及意义.中国区域地质,3:234-240.
    23.孔定江,李道季,吴莹.近50年长江口的丰要有机污染的记录.海洋湖沼通报,2007,2:94-103.
    24.乐嘉祥,王德春,中国河流水化学特征,地理学报,1963,29(1):2-12.
    25.刘红,何青,徐俊杰,等.特枯水情对长江中下游悬浮泥沙的影响,地理学报,2008,63(1):50-64.
    26.刘再华,大气COz两个重要的汇,科学通报,2000,21(45):2348-2351.
    27.李晶莹,张经.流域盆地的风化作用与全球气候变化.地球科学进展,2002,17(3):412-419.
    28.李晶莹.中国主要流域盆地的风化剥蚀作用与大气CO_2的消耗及其影晌因子研究[博士论文].中国海洋大学,2002.
    29.李晶莹,张经.黄河流域化学风化作用与大气CO_2的消耗.海洋地质与第四纪地质,2003,23:43-49.
    30.李景保.洞庭湖水系离子径流与化学剥蚀的研究.地理科学,1989,9(3):242-251.
    31.李丽娜.长江口滨岸潮滩大型底栖动物重金属的分布累积及其生态毒理效应.2004,华东师范大学硕士论文.
    32.陆渝蓉.地球水环境学.2001,南京:南京大学出版社,62-67.
    33.龙文国.海南屯昌南棍园地区晚古生代地层特征及其构造意义[硕士论文].中国地质大学,2004.
    34.秦建华,潘桂棠,杜谷.新生代构造抬升对地表化学风化和全球气候变化的影响.地学前缘,2000,7(4):517-524.
    35.齐立文,王文兴.我国低纬度、亚热带地区的降水化学及其雨水酸化趋势分析.环境科学研究,1995,8(1):12-20.
    36.邱冬生,庄大方,胡云锋等.中国岩石风化作用所致的碳汇能力估算.地球科学-中国地质大学学报,2004,29:177-190.
    37.全为民,沈盎绿,钱蓓蕾,平先隐,韩金娣,李春鞠,施利燕,陈亚瞿.长江口盐沼植物对营养盐和重金属的吸收、分布与滞留研究.海洋环境科学,2007,26(1):14-18.
    38.孙媛媛.亚热带小流域水文地球化学特征及风化过程中CO_2的消耗[硕士论文].首都师范大学,2006.
    39.唐克丽,王斌科,郑粉梨.黄土高原人类活动对土壤侵蚀的影响.人民黄河,1994,2:13-16.
    40.王文兴,丁国安.中国降水酸度和离子浓度的时空分布.环境科学研究,1997,10(2):1-7.
    41.吴刚,李晓,张恒.四川省会东县雷家湾金沙江河谷地段水化学特征.水土保持研究,2006,13(3):15-17.
    42.许炯心.长江上游干支流的水沙变化及其与森林破坏的关系.水利学报,2000,1:72-80.
    43.许越先,中国入海离子径流量的例步估算及其影响因素分析,地理科学,1984,4(3):213-217.
    44.夏星辉,张利田,陈静生等.岩性和气候条件对长江水系河水主要离子化学的影响.北京大学学报(自然科学版),2000,36(2):246-252.
    45.夏星辉,张利田,陈静生.岩性和气候条件对长江水系河水主要离子化学的影响.北京大学学报,2000,36:246-252.
    46.薛滨,姚书春,王苏民,夏威岚.长江中下游不同类型湖泊沉积物营养盐蓄积变化过程及其原因分析.第四纪研究,2007,27(1):122-127.
    47.姚小红,崔平,高会旺.沿海地区海盐和大气污染物反应的致酸作用.环境科学,1998,17(4):320-325.
    48.杨昂,孙波,赵其国.中国酸雨的分布、成因及其对土壤环境的影响.土壤,1999,1:13-18.
    49.杨世伦,姚炎明,贺松村.长江口冲击岛岸滩剖面形态和冲淤规律.海洋与湖沼,1999,30(6),764-769.
    50.张立成,董文江,王李平.长江水系河水的地球化学特征.地理学报,1992,47(3):220-232.
    51.张立成,董文江.我国东部河水的化学地理研究.地理研究,1990,9(2):67-75.
    52.张立成,赵桂久,董文江.湘江水系河水的地理化学特征的研究.地理学报,1987,42(3):243-251.
    53.张经.盆地的风化作用对河流化学成分的控制.张经,中国主要河口的生物地球化学研究.北京:张经,1997.
    54.张利田.珠江水系河水离子三角组分图分析.中山大学学报(自然科学版),2000,39(3):102-105.
    55.张利田.珠江水系河水离了总量空间自相关特征.中山大学学报(自然科学版),2000,39(1):101-104.
    56.张利田.珠江水系河水离子总量区域分布特征及其与流域自然条件的关系.中山大学学报(自然科学版),1999 38(5):104-108.
    57.张群英,林峰,李迅.中国东南沿海地区河流中的主要化学组分及其入海通量.海洋学报,1985,7(5):561-566.
    58.张莹莹.长江口淡-咸水混合过程对营养盐在悬浮物-水之间分配的探讨[博士论文].华东师范大学,2007.
    59.张世法.气候变化对海河流域水资源影响的研究与展望,海河水利,1995,6:10-13.
    60.张建云,王金星,李岩,章四龙.近50年来我国主要江河径流变化,气候变化观 测事实,2008,2:31-34.
    61.赵继昌,耿冬青,彭建华等.长江河源区的河水主要元素与鳃同位素来源.水文地质工程地质,2003,2:89-98.
    62.邹海明.大气降水化学特征研究综述.农业与技术,2007,27(4):114-115.
    63.Bartarya S K.Hydrochemistry and rock weathering in a sub-tropical Lesser Himalayan river in Kumaun,India.Journal of Hydrology,1993,146:149-174.
    64.Barth J A C,Cronin A A,Dunlop J et al.Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin:evidence from major elements and stable carbon isotopes in the Lagan River(N.Ireland).Chem.Geol.,2003,200:203-216.
    65.Bickle M J,Collins R.Small-catchment perspective on Himalayan weathering fluxes.Geological Society of America,2002,30:355-358.
    66.Blum J D.The effect of Late Cenozoic Glaciation and tectonic uplift on silicate weathering rates and the marine ~(87)Sr/~(86)Sr record.Tectonic Uplift and Climate Change.Plenum Publishing Corporation:New York and London,1997,259-288.
    67.Boeglin J L,Probst J L.Physical and chemical weathering rates and CO2consumption in atropical lateritic environment:the Upper Niger basin.Chemical Geology,1998,148:137-156.
    68.Braun J J,Ngoupayou J R N,Viers J et al.Present weathering rates in a humid tropical watershed:Nsimi,South Cameroon.Geochim.Cosmochim.Acta,2005,69:357-387.
    69.Caraco N.E,Cole J J.Human impact on nitrate export:An analysis using major world rivers.Ambio,1999,28:167-170.
    70.Chen J S,Li Y H,et al.Physical and chemical denudation of the river drainage areas in China.Kexue Tongbao,1985,30(6):791-796.
    71.Daniel Markewitz,Eric A.Davidson,Ricardo de O.Figueiredo,Reynaldo L.Victoria§& Alex V.Krusche.Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed.nature,2001,410:802-805.
    72.Datta D K,Subramanian V.Nature of solute loads in the rivers of the Bengal drainage basin,Bangladesh.Journal of Hydrology,1997,198:196-208.
    73. Dessert C, Dupre B, Gaillardet J et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol., 2003, 202: 257-273.
    74. Elderfield H, Upstill Goddard R, Sholkovitz E R, The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta, 1990, 54:971-991.
    75. France Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion.Nature, 1997, 390(6):65-67.
    76. Gaillardet J, Dupre B, Allegre C J, et al. A global geochemical mass budget applied to the Congo Basin Rivers: Erosion rates and continental crust composition. Geochemica et Cosmochimica Acta, 1995,59:3469-3485.
    77. Gaillardet J, Dupre B, Allegre C J, et al. Chemical and physical denudation in the Amozon River Basin. Chemical Geology,1997,142:141-173.
    78. Gaillardet J, Dupre B, Allegre C J, et al. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 1999, 63:403 7-4051.
    79. Gaillardet J, Dupre B, Lourat P, et al. Global silicate weathering and CO_2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999, 159: 3-30.
    80. Galy A, Lanard G F. Weathering processes in the Ganges-brhmaputra basin and the river alkalinity budget,Chemical Geology,1999,159:31-60.
    81. Goldstein S J, Jacobsen S B. The Nd and Sr isotopic systematics of river water dissolved material: implications for the sources of Nd and Sr in seawater. Chem.Geol, 1987, 66: 245-272.
    82. Grasby S E, Hutcheon L, Chemical dynamics and weathering rates of a carbonate basin Bow River, southern Alberta. Geochemistry, 1998, 15: 67-77.
    83. Grassholf K., Ehrhardt M. and Kremling K. (1983) Methods of Seawater Analysis. 2~(nd) edn. Verlag Chemie GmbH, D-6940 Weinheim, 419 pp.
    84. Grosbois C., Negrel P., Grimaud D. et al., An overview of dissolved and suspended matter fluxes in the Loire River Basin: Natural and anthropogenic inputs. Aquatic Geochemistry, 2001,7:81-105.
    85. Howarth R. E., Billen G, Swaney D. Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 1996, 35:75-139.
    86. Huh Y, Tsio M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of Eastern Siberia: I Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochimica et Cosmochimica Acta, 1998, 62: 1657-1676.
    87. Hui-Yao Chu, Chen-Feng You. Dissolved constituents and Sr isotopes in river waters from a mountainous island-The Danshuei drainage system in northern Taiwan. Applied Geochemistry ,2007,doi:10.1016/j.apgeochem.2007.03.030
    88. J. Gaillardet, B. Dupre, P. Louvat,C.J. Allegre. Global silicate weathering and CO? consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999, 159:3-30.
    89. Ludwig W, Amiotte Suchet P, Munhoven G, et al. Atmospheric CO_2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global and Planetary Change, 1998, 16-17: 107-120.
    90. Martin J M, Meybeck M. Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 1979, 7: 173-206.
    91. Meybeck M. Total mineral dissolved transport by world major rivers. Hydrological-Sciences-Bulletin-des.Sciences Hydrologiques,1976,ⅩⅪ26:265-282.
    92. Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 1987, 287: 401-428.
    93. Meybeck Michel,Richard Helmer. The quality of rivers: from pristine stage to global pollution. Palaeography, Palaeoclimatology, palaeoecology(Global and Planetary Change Section), 1989, 75:283-309.
    94. Michael T Hrena, CPage Chamberlain, George E Hilley,Peter M Blisniuk, Bodo Bookhagen. Major ion chemistry of the Yarlung Tsangpo - Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim. Cosmochim,2007,Acta, doi:10.1016/j.gca.2007.03.021.
    95. Milliman J D, Meade R H. World-wide delivery of river sediment to the ocean. Journal of Geology, 1983, 91:1-21.
    96. Millot R, Gaillardet J, Dupre B, Allegre C J. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochim. Cosmochim. Acta, 2003, 67: 1305-1329.
    97. Pandey S K, Singh A K, Hansnain S L. Weathering and geochemical processes controlling solute acquisition in Ganga Headwater-Bhagirathi River, Garhwal Himalaya, India. Aquatic Geochemistry, 1999, 5: 357-379.
    98. Peter A Raymond, Jonathan J Cole. Increase in the Export of Alkalinity from North Americans Largest River. Science, 2003, 301:88-91.
    99. Peter A. Raymond, Oh N. H., Turner E. R., Broussard W. et al. anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature. 2008, 451:449-452.
    l00.Qin Jianhua, HuhYoungsook, Edmond John M., Du Gu, Ran Jing. Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River. Chemical Geology, 2006, 227: 53- 69.
    101.Qiu J S, Wang D Z, Mclnnes B I A, et al. Two subgroups of A-type granites in the coastal area of Zhejiang and Fujian Provinces, SE China, and geochemical constraints on their petrogenesis. 2004, Transactions of the Royal Society of Edinburgh: Earth Sciences, 95 :227-236.
    102.Qu C H, Chen C Z, Yang J R, et al. Geochemistry of dissolved and particulate elements in major river of China. Estuaries, 1993, 16(3A): 475-487.
    103.Sarin M M, Krishnaswami S. Major ion chemistry of the Ganga-Brahmaputra river systems, India. Nature, 1984, 312:538-541.
    104.Sarin M M, Krishnaswami S and Dilli K, et al. Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochmica Acta, 1989, 53: 997 - 1009.
    105.Seulgi Moon, Youngsook Huh, Jianhua Qin, Nguyen van Pho. Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochimica et Cosmochimica Acta, 2007, 71:1411-1430.
    106.Stallard R F, Edmond J M. Geochemistry of the Amazon-1.Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 1981, 86 (C10): 9844-9858.
    107.Stallard R F, Edmond J M. Geochemistry of the Amazon-2.The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 1983, 88(C 14): 9671-9688.
    108.Stallard R F and Edmond J M. Geochemistry of the Amazon-3.Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 1987, 92(C8): 8293-8302.
    109.Stephen Porder, George E. Hilley, Oliver A. Chadwick, Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands, Earth and Planetary Science Letters,2007, doi: 10.1016/j.epsl.2007.03.047.
    110.Suchet P S, Probst J L. A global model for present-day atmospheric/soil CO_2 consumption by chemical erosion of continental rocks. Tells, 1995, 47B: 273-280.
    111.Suchet P S, Probst J L. Modeling of atmospheric CO_2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins. Chemical Geology, 1993, 107: 205-210.
    112. Wang F S, Wang Y C, Zhang J, et al. Human impact on the historical change of CO_2 degassing flux in River Changjiang[J]. Geochemical Transactions, 2007, 8:7 doi: 10.1186/1467-4866-8-7.
    113.Yang Shi lun, Zhao Qing ying, Belkin M. logor. Temporal variation in the sediment lad of the Yangtze River and the influences of human activities. Journal of Hydrology, 2002, 263:56-71.
    114.Zakharova, E A, Pokrovsky O S, Dupre B, Gaillardet J, Effmova L E, Chemical weathering of silicate rocks in Karelia region and Kola peninsula, NW Russia: assessing the effect of rock composition, wetlands and vegetation, Chemical Geology (2007), doi: 10.1016/j.chemgeo. 2007.03.018
    115.Zhang J, Huang W W, Letoile R. Major element chemistry of the Huanghe, China-Weathering processes and chemical fluxes. Journal of Hydrology, 1995, 168:173-203.
    116.Zhang J, Huang W W, Liu M G. Drainage basin weathering and major element transport of the large Chinese rivers(Huanghe and Changjiang).Journal of Geophysical Research,1990,95(C8):13277-13288.
    www.ks5u.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700