应用图像法在线监测输电线路覆冰厚度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在输变电系统中,输电线路的覆冰现象十分普遍。覆冰可以引起导线舞动、断线、倒塔及绝缘子闪络等重大事故,造成巨大的经济损失和一定的社会影响。因此,实时掌握输电线路的覆冰情况特别是覆冰厚度以便电力部门采取相应的措施避免输电线路覆冰引发重大事故成为人们目前研究的热点。
     针对现有输电线路覆冰厚度检测方法的不足,提出了一种新的输电线路覆冰厚度在线监测方法,即通过高压铁塔上的工业摄像机在线采集输电线路覆冰前后的图象,然后通过GPRS网络和Internet网络传送到电力系统控制中心,控制中心计算机系统对图像进行处理,提取其边界轮廓,最后通过将导线和绝缘子覆冰状态与非覆冰状态时的边界进行比较并通过一定的标定计算方法得出其当时的覆冰厚度。本文完成了在线监测系统的总体方案设计,并根据系统的特点设计了工业摄像机、GPRS图像传输模块以及监测端电源等硬件设备的方案和类型。
     本文通过试验及结果分析发现,将彩色图像转换成黑白图像进行处理完全满足本课题的需要,同时通过多帧相邻图像求平均值、调整灰度分布以及中值滤波等可以明显增加图像对比度、降低图像噪声干扰;应用小波变换和浮动阈值方法可以准确地提取边界较平滑的导线和绝缘子覆冰前后的边界轮廓,且依据该边界轮廓计算的导线和绝缘子左右部分的覆冰厚度的误差分别是0.1mm、0.6mm和0.4mm,均小于本文的单个像元大小(0.67mm),覆冰厚度计算精度较高;应用最优阈值和数学形态学方法能准确提取导线覆冰前后的边界轮廓,且该方法特别适用于提取导线覆冰边界起伏较大的情况,依据此边界计算的覆冰厚度能更好的接近导线的真实覆冰厚度,该方法同时解决了导线冰层透明时边界轮廓提取的难题。试验同时发现,本文提出的方法对导线的覆冰厚度计算精度要比绝缘子略高,且导线和绝缘子静止状态下的覆冰厚度计算误差一般不会超过图像单个像元的大小,因此提高输电线路图像的分辨率,降低像元的大小可以显著减小覆冰厚度的计算误差。
     本文根据摄像机成像公式,提出采用振动覆冰导线在距离摄像机远近不同位置时计算的覆冰厚度中间值作为振动导线的真实覆冰厚度,该方法在实验室验证条件下的误差是1.5mm,在覆冰厚度不发生明显变化的前提下尽量多采集振动覆冰导线的图像可以降低覆冰厚度的计算误差。
In the power transmission system, the icing phenomenon of transmission line is very common. It can cause conductor galloping, tower falling down and insulator flashover, which may cause power failure, affect people’s normal production and life and result in great economic loss and a certain degree of social influence. Therefore, to master the icing situation of transmission line, especially the icing thickness real-time so that the electricity sector can take appropriate measures to prevent transmission line from a major accident is becoming a research focus.
     A new method of measuring the icing-thickness of transmission line on-line is proposed in this paper for the deficiency of existing methods. In this method, the pictures of transmission line which are photoed by the camera on the iron tower are transported to the control centre of power system through GPRS and Internet network firstly, and then, the pictures are processed there to extract the edges of conductor and insulator. The icing thickness can be gained by comparing the iced edge and the uniced edge. The type and configuration of industrial camera, GPRS module and power device are designed according to the characteristics and requirements of the proposed monitoring system in this paper.
     Through analyzing the test and its result, the conclusion can be obtained as follow: converting the original RGB images to gray images can satisfy the needs of the subject in this paper. Calculating the average value of some adjacent images, adjusting the gray level distribution and using median filtering can increase the contrast and reduce the influence of noises in the image; the method based on wavelet transform and floating threshold can extract the edges of conductor with smooth icing boundary and insulator accurately. The experimental results show that the icing thickness calculation errors of conductor, the left part and the right part of insulator which are based on the edges extracted through wavelet transform and floating threshold are respectively 0.1mm, 0.6mm and 0.4mm which are all less than the size of a single pixel (0.67mm in this paper) and the calculation accuracy is satisfactory; the method based on the optimal threshold and mathematical morphology can extract the edges of iced conductor and uniced conductor accurately and is especially suitable for edge extraction of conductor with big ups and downs of icing boundary. The problem of the transparent icing edge extraction on conductor is also solved successfully in the method; the experimental results also show that the errors of the icing thickness calculation values which are gained through the proposed icing thickness calculation methods in this paper are normally less the size of a single pixel. So improving the resolution of images and reducing the size of a single pixel can significantly reduce the icing thickness calculation error.
     The method that using the median value among the icing thickness calculation values through the vibrating conductor images in different location as the true icing thickness of the vibrating conductor based on the camera imaging fomula is proposed. The icing thickness calculation error of vibrating conductor based on the method in this paper is 1.5mm and the error can be reduced by acquisting more icing images of vibrating conductor to calculate the median value of pixel numbers corresponding to icing conductor diameter in different places on condition that the icing thickness doesn’t change significantly.
引文
[1]孙才新,司马文霞,苏立春.大气环境与电气外绝缘[M].北京:中国电力出版社, 2002.
    [2]逸梅,史惠萍.绝缘子的覆冰及覆冰绝缘子的放电特性[J].广西电力技术. 1995, No.3: 20-24.
    [3]蒋兴良.输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[D].重庆:重庆大学, 1997.
    [4]张宏志.大面积导线覆冰舞动事故的调查与分析[J].东北电力技术. 2001, No.12: 15-19.
    [5]苑吉河,蒋兴良,孙才新,谢述教,易辉.输电线路导线覆冰的国内外研究现状[J].高电压技术. 2003, Vol.30, No.1: 6-9.
    [6]龙小乐,鲍务均等.输电导线覆冰研究[J].武汉水利电力大学学报. 1996, Vol.29, No.5: 102-107.
    [7] Admirat, Lapeyre. The Amount of Icicles of Overhead Lines[C]. Proceedings of the 5th IWAIS’90, Japan, 1988: B6-3.
    [8] Yasui. Growth of Air Hoar in Super-cooled Fog [J]. Low Temperature Science, Series B5, 1990.
    [9]孙才新.大气环境与外绝缘[M].重庆:重庆大学出版社, 1996.
    [10]胡小华.输电线路防覆冰涂料的研究[D].重庆:重庆大学, 2006.
    [11]蒋兴良.覆冰绝缘子工频放电特性与放电过程的研究[D].重庆:重庆大学, 1988.
    [12] Farzaneh M, Kiernicki J. Flashover problems caused by ice build-up oninsulators [J]. IEEE Electrical Insulation Magazine. 1995, Vol.11, No.2: 5-17.
    [13] Farzaneh M, Kiernicki J, Drapeau J F. Ice accretion on energized line in-sulators [J]. International Journal Offshore and Polar Engineering. 1992, Vol.2, No.3: 228-233.
    [14]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社, 2002.
    [15]顾乐观,孙才新.电力系统的污秽绝缘[M].重庆:重庆大学出版社, 1990.
    [16]刘和云.架空导线覆冰防冰的理论与应用[M].北京:中国铁道出版社, 2001.
    [17]郭庆雄.送电线路覆冰厚度的检测方法[J].华中电力. 1992, Vol.5, No.6: 71-73.
    [18]黄新波,孙钦东,程荣贵,张冠军,刘家兵.导线覆冰的力学分析与覆冰在线监测系统[J].电力系统自动化. 2007, Vol.31, No.14: 98-101.
    [19]魏伟波,芮筱亭.图像边缘检测方法研究[J].计算机工程与应用. 2006, No.30: 88-91.
    [20]徐飞,施晓红. MATLAB应用图象处理[M].西安:西安电子科技大学出版社, 2002.
    [21] Mallat S, Zhong S. Characterization of signals from multiscale edges [J]. IEEE Transform PAMI. 1992, Vol.14, No.7: 710-732.
    [22]宋国乡,姜东焕,孙晓丽.小波尺度空间中的边缘检测算法[J].计算机应用研究. 2007,Vol.24, No.3: 97-99.
    [23]田岩岩,齐国清.基于小波变换模极大值的边缘检测方法[J].大连海事大学学报. 2007, Vol.33, No.1: 102-105.
    [24] Junaid I. Siddique, Kenneth E. Burner. Wavelet-Based multiresolution edge detection utilizing gray level edge maps[C]. IEEE Image Processing International Conference, 1998, Vol.2: 550-554.
    [25] D. Heric, B. Potocnik. Multiscale Edge Detector[C]. IEEE 48th International Symposium ELMAR, 2006: 37-40.
    [26] Javad Musevi Niya, Ali Aghagolzadeh. Edge Detection Using Directional Wavelet Transform[J]. IEEE MELECON. 2004, Vol.1: 281-284.
    [27]黄治湖,周志宏,邢世雄,邓旭.方向小波变换在直线轮廓物体的边缘检测中的应用[J].机械. 2007, Vol.34, No.1: 51-53.
    [28]张东芳,王向南.基于数学形态学的图像边缘处理[J].微计算机信息(测控自动化). 2006, No.22: 186-188.
    [29] Zhao Yu-qian etc. Medical Images Edge Detection Based on Mathematical Morphology[C]. IEEE 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005: 6492-6495.
    [30] S K Pa1, R A King. On edge detection of x—ray images using fuzzy sets [J]. IEEE Trans on PAMI. 1983, Vol.5, No.1: 69-77.
    [31]周德龙,潘泉.图像模糊边缘检测的改进算法[J].中国图像图形学报. 2001, Vol.6, No.4: 353-358.
    [32]王倩,阮海波.快速模糊边缘检测算法[J].中国图像图形学报. 2001, Vol.6, No.1: 92-95.
    [33] L O Chua, L Yang. Cellular neural networks: Thory [J]. IEEE Trans Circuits Syst. 1988, Vol.35, No.10: 1257-1272.
    [34]冯会真,夏哲雷,林志一.基于神经网络的图像边缘检测方法[J].中国计量学院学报. 2006, Vol.17, No.4: 289-291.
    [35] DUAN Hong, HUANG You-rui. A Novel Method with Immune Genetic Algorithm Based on Snakes for Edge detection of Concave Boundary[C]. IEEE International Conference on Control and Automation, 2007: 2525-2528.
    [36]王建锋,吴庆标.分层遗传算法实现图像边缘检测[J].计算机工程与应用. 2006, No.14: 95-96, 151.
    [37] Markus Gudmundsson, Essam A. El-Kwae, Mansur R. Kabuka. Edge Detection in Medical Images Using a Genetic Algorithm [J]. IEEE Transactions on medical imaging. 1998, Vol.17, No.3: 469-474.
    [38] Pierret S. Turbomachinery blade design using a Navier Stokes solver and artificial neural network [J]. ASME Journal of Turbomachinery. 1999, Vol.121, No.1: 326-332.
    [39] Yishu Zhai, Xiaoming Liu. Wavelet multiscale products based genetic fuzzy clustering for image edge detection analysis[C]. IEEE 5th International Conference on Cognitive Informatics, 2006, Vol.1: 413-417.
    [40]刘莉,蒋加伏,唐贤瑛.基于小波和快速模糊算法的医学图像边缘检测[J].计算机仿真. 2007, Vol.24, No.2: 179-182.
    [41]贾云得.机器视觉[M].北京:科学出版社, 2000.
    [42]章毓晋.图像工程(下册):图像理解与计算机视觉[M].北京:清华大学出版社, 2000.
    [43]邢科新.基于图像处理的结冰传感器标定方法研究[D].武汉:华中科技大学, 2006.
    [44]李先志.输电线路状态参数在线监测的取能电源及系统设计研究[D].重庆:重庆大学, 2008.
    [45]陈攀.基于无线分组的输电线路绝缘子泄漏电流在线监测系统研究[D].重庆:重庆大学, 2006.
    [46]谢建平.光学技术基础[M].北京:科学出版社, 1996.
    [47]王琦.数字摄影常用术语词汇(一)[J].影像技术. 2006, No.1: 59-62.
    [48]周平.单目视觉测量系统及随动跟踪测量技术的研究[D].武汉:华中科技大学, 2005.
    [49]高兴明.从标准镜头的通光孔径看各类相机和镜头的光圈系数标定[J].甘肃高师学报. 2004, Vol.9, No.5: 79-80.
    [50]董守愚. CMOS图像传感器[J].安徽电子信息职业技术学院学报. 2006, Vol.5, No.27: 100-101, 112.
    [51]王庆有.图像传感器应用技术[M].北京:电子工业出版社, 2003.
    [52] SONG J. A prototype clamp-on magneto-optical current transducer for power system metering and relaying [J]. IEEE Transactions on Power Delivery. 1995, Vol.10, No.4: 1764-1770.
    [53] Mihailovic. P. Development of a portable fiber-optic current sensor for power systems monitoring [J]. IEEE Transactions on Instrumentation and Measurement. 2004, Vol.53, No.1: 24-30.
    [54]张曦.混合式OCT高压侧电路的供电方式[J].高电压技术. 2002, Vol.28, No.12: 14-15.
    [55]王洪.送电线路监测系统中的高压抽能电源[J].高电压技术. 2005, Vol.31, No.7: 73-75.
    [56] Pilling. N.A. Optical fibre current measurement system using liquid crystals and chromatic modulation [J]. IEEE. Proc. Gender Trans Distrib. 1993, Vol.140, No.5: 351-356.
    [57] A. E. Vlastos. Leakage current data acquisition system for field tests of insulators[C]. The 8th International symposium on high polymeric voltage engineering, Yokohama, Japan, 1993: 205-208.
    [58]王志勇.高压母线温度在线测量装置[J].电力系统自动化. 2000, Vol.24, No.13: 60-61.
    [59] D. M. Leite. Registration instruments for measurements of leakage currents on polluted insulators[C]. The 6th International symposium on high voltage engineering, New Orleans, USA, 1989: 230-234.
    [60] Gao L Y. On-line temperature monitoring in insulation material for HV devices[C]. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, 2003, Vol.1: 118-121.
    [61]李芙英.一种应用于高电压侧测量系统中电源[J].高电压技术. 2002, Vol.28, No.3: 46-47.
    [62] Zhang Gang. A new electro-optic hybrid current-sensing scheme for current measurement at high voltage [J]. Review of scientific instruments. 1999, Vol.70, No.9: 3755-3758.
    [63]唐晓初.小波分析及其应用[M].重庆:重庆大学出版社, 2006.
    [64]王建中,赵军,张晖.图像边缘提取的小波多孔算法及改进[J].武汉理工大学学报. 2004, Vol.26, No.1: 76-79.
    [65] Olivier Rioul, Pierre Duhamel. Fast Algorithms for Discrete and Continuous Wavelet Transforms [J]. IEEE Transactions on information theory. 1992, Vol.38, No.2: 569-586.
    [66]田莹,王丽君,苑玮琦.一种基于边界特征的耳廓提取新方法[J].光电工程. 2007, Vol.34, No.4: 39-43.
    [67] Hui Chen, Bir Bhanu. Human Ear Detection from Side Face Range Images[C]. IEEE Proceedings of the 17th International Conference on Pattern Recognition, 2004, Vol.3: 574-577.
    [68] Otsu. A Threshold Selection Method from Gray-Level Histogram [J]. IEEE Trans on SMC-9. 1979, Vol.9, No.1: 62-66.
    [69]刘振亚.特高压电网[M].北京:中国经济出版社, 2005.
    [70] S. M. Berlijn etc. Laboratory Tests and Web Based Surveillance to Determine the Ice- and Snow Performance of Insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2007, Vol.14, No.6: 1373-1380.
    [71]张成等.基于图像处理技术的绝缘子覆冰自动识别[J].华东电力. 2009, Vol.37, No.1: 146-149.
    [72]李皓.基于DSP的输电线路覆冰图像检测系统[D].西安:西安理工大学, 2008.