氧化锆增韧的氟硅云母玻璃陶瓷的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟硅云母玻璃陶瓷具有全瓷材料的优点,同时还具有优良的可切削性,成为与齿科CAD/CAM相匹配的全瓷修复材料,但其低强度低韧性限制了它在临床的广泛应用。因此现在的研究主要集中在既能保留氟硅云母玻璃陶瓷优良的生物相容性、可切削性能,又能最大程度提高强度和韧性,使其满足临床需要。近年来,为了提高陶瓷材料的强度和韧性,ZrO2增韧的复合陶瓷材料成为研究的热点。本文的指导思想是在氟硅云母玻璃陶瓷中添加ZrO2来提高基质玻璃的强度和韧性,为后续研究提供实验室依据。
     研究内容与方法:
     1.于氟硅云母基质玻璃中添加ZrO2的同时,将熔融法和烧结法两种工艺进行了对比,以扫描电镜(SEM)、X射线衍射(XRD)等分析手段对材料的物相组成及微观结构进行观察,通过测定三点弯曲强度和断裂韧性来反映其力学性能,选出何种工艺更适合添加ZrO2粉体,为下一步研究确定技术路线。
     2.采用烧结法添加等量(25wt%)、不同粒度ZrO2(50 nm和10μm)粉体来制备氟硅云母玻璃陶瓷复合材料,研究不同粒度ZrO2与复合材料的力学性能与微观结构间的关系。
     3.选用纳米ZrO2(50nm),采用烧结法添加不同质量(5wt%、10wt%、20wt%、30wt%)的ZrO2粉体来制备氟硅云母玻璃陶瓷复合材料,讨论不同含量ZrO2对氟硅云母玻璃陶瓷力学性能的影响。
     研究结果:
     1.采用熔融法和烧结法加入5wt%ZrO2后,氟硅云母玻璃陶瓷复合材料的抗弯强度和断裂韧性都有不同程度的提高,熔融法制备的复合材料三点抗弯曲强度达到128.5±12.1MPa,断裂韧性为1.62±0.06MPa·m1/2,烧结法制备的复合材料三点抗弯曲强度达到134.4±10.2MPa,断裂韧性为1.88±0.16MPa·m1/2。
     2.纳米组抗弯强度达到220.8±9.30MPa,断裂韧性达到2.54±0.10MPa·m1/2。纳米组和微米组间三点抗弯曲强度、断裂韧性均有统计学意义(P<0.05)。
     3.当纳米氧化锆含量为30%时,三点抗弯曲强度达到224.3±10.30MPa,断裂韧性为2.80±0.13MPa·m1/2。添加5wt%与10wt% ZrO2所制备的复合材料之间三点抗弯曲强度、断裂韧性无显著性差异(P>0.05),其余各实验组两两间有显著性差异(P<0.05)。
     实验结论:
     1.采用烧结法制备的氧化锆增韧的氟硅云母玻璃陶瓷力学性能比熔融法有所提高。
     2.添加纳米和微米ZrO2增韧的氟硅云母玻璃陶瓷复合材料,纳米ZrO2增韧的复合材料具有较好的力学性能。
     3.随着氧化锆含量的增加氟硅云母玻璃陶瓷力学性能逐渐增强。纳米氧化锆含量为30%时,具有较好的增强补韧效果。
Fluorosilicic mica glass ceramics has excellent machinability, and become all-ceramic restoration material suiting for dentistry CAD/CAM. However, the glass ceramics exhibits low strength and toughness which limit the application of the clinic. The studies of fluorosilicic mica glass-ceramics mainly aim at keeping its excellent properties, and simultaneously enhancing its fracture strength and toughness in order to hold the dependability in clinical use. Recently, ceramic composite toughed by zirconia has become a study hotspot. The key idea of this work is to enhance fracture strength and toughness of Fluorosilicic Mica Glass-ceramics by adding zirconia. The aim is to provide important laboratory reference for future study.
     Content and methods:
     1. The first part of this study (experimentⅠ) is to compare the melt cast method with the sintering method in order to choose the better method to prepare zirconia toughened fluorosilicic mica glass-ceramic composites. Mechanical properties of zirconia toughened fluorosilicic mica glass ceramic composites were tested by three point bending strength and fracture toughness, and the microstructure and crystalline phase composition were analyzed by SEM and XRD apparatus.
     2. The purpose of experimentⅡis to determine which size of particle can more effectively improve the strength and toughness of the glass ceramics. This experiment is adopting the sintering method and adding different particle size (50nanometer and 10micron) of zirconia with the same content (25wt%) to fluorosilicic mica glass-ceramics, which is to investigate the influence of different particle size of zirconia on mechanical properties and microstructure of the glass-ceramics composites.
     3. ExperimentⅢis adding zirconia with the same particle size (50nanometer) but with different contents (5wt%, 10wt%, 20wt%, 30wt%) to fluorosilicic mica glass-ceramics and adopting the sintering method to prepare some samples. This experiment is to discuss the effect of different contents of nanometer zirconia toughened fluorosilicic mica glass-ceramics on the mechanical properties of the composites.
     Results:
     1. Zirconia toughened fluorosilicic mica glass-ceramics composite which prepared by the melt cast method and the sintering method have higher flexural strength and fracture toughness than that without zirconia. Composites which prepared by the sintering method showed much higher flexural strength and fracture toughness, which were134.4±10.2Mpa and 1.88±0.16MPa·m1/2 respectively. Composites which prepared by the melt cast were 128.5±12.1MPa and 1.62±0.06MPa·m1/2.
     2. Fluorosilicic mica glass-ceramics composites with nana-size powder of zirconia showed much higher flexural strength and fracture toughness, which were 220.8±9.30Mpa and 2.54±0.10 MPa·m1/2 respectively. There have significant difference between nana-size zirconia and micro-size zirconia toughened fluorosilicic mica glass-ceramics composite which prepared by sintering method in the flexural strength and fracture toughness(P<0.05).
     3. The flexural strength and fracture toughness of glass-ceramics with 30wt% ZrO2 which did not influence the crystallization process were 224.3±10.3MPa and 2.80±0.13MPa·m1/2 respectively. The flexural strength and fracture toughness with 5wt% and 10wt% nana-size zirconia toughened fluorosilicic mica glass-ceramics had no significant(P>0.05).
     Conclusions:
     1. The flexural strength and fracture toughness of zirconia toughened fluorosilicic mica glass-ceramics composite prepared by sintering method were much higher than those prepared by the melt cast method.
     2. Fluorosilicic mica glass-ceramics composites prepared by sintering method with the same content but different particle size of zirconia shows that the composite with nano-size powder of zirconia has higher flexural strength and fracture toughness than that with micro-size powder of zirconia.
     3. The mechanical property of fluorosilicic mica glass-ceramics composites is higher and higher with the increase of the zirconia content. The flexural strength and fracture toughness of glass-ceramics with 30 wt% nano-size of zirconia was reinforced significantly.
引文
[1]斯温MV主编,郭景坤等译,陶瓷的结构与性能[M].北京科学出版社,1999: 235-246.
    [2] Mcmillan PW. Glass-ceramics [M].London: Academic press, 1979: 1-3.
    [3] Grossman DG. Machinable glass ceramics based on tetrasilicic mica [J]. J Am Ceram Soc, 1972, 55(9): 446-449.
    [4] John A., Topping. The fabrication of glass-ceramic materials based on blast furnace slag–a review [J]. J Canadian Ceram Soc, 1976, 1(45): 63-67.
    [5] N Martin, NM. Jedynakiewicza. Clinical performance of CEREC ceramic inlays: a systematic review [J]. Dent Mater, 1999, 15(1): 54–61.
    [6] MS Bapna, HJ Mueller. Study of devitrification of Dicor? glass [J]. Biomateria, 1996, 17(21): 2045-2052.
    [7]乔冠军,以Ba云母为主晶相的可切削玻璃陶瓷[J].无机材料学报,1996,(1): 29-32.
    [8]李红,宋君祥,冉均国,医用可切削微晶玻璃的研究进展[J].硅酸盐通报, 2001,20(6): 39-42.
    [9] Grossman DG., Johnson LM. Glass-ceramic compositions for dental constructs [P].U.S. Pat. No. 4652312, 1987-03-24.
    [10] D Brodkin, Panzera, Carlino, et al. Machinable glass-ceramics [P]. U.S. Pat. No.6375729, 1987-03-24.
    [11]何帅,陈吉华,苗鸿雁等,新型牙科氧化锆玻璃陶瓷复合材料初探[J].陶瓷工程, 2001,35(1): 3-6.
    [12]张玉峰,杨涵美,郭景坤等,LCMAS微晶玻璃/Y-TZP复相材料[J].无机材料学报, 1994,9(2): 156–160.
    [13] Adair, Peter J. Glass-ceramic dental products [P]. U. S. Patent No.4431420. 1984.
    [14] Chang JC, Hart DA, Estey AW, et al. Tensile bond strengths of five luting agents to two CAD-CAM restorative materials and enamel [J]. J Prosthet Dent 2003, 90(1): 18-23.
    [15] M Tomozawa, LL Hench, SW Freiman. Advances in Nucleation and Crystallization in Glasses [M]. Columbus, USA: The American Ceramic Society, 1971.
    [16] DG Grossman. Tetrasilicic mica glass ceramic method [P].U.S. Pat. No. 3732087, 1973-05-08.
    [17] WH Daniels, RE Moore. Crystallization of a tetrasilicic fluormica glass [J]. J Am Ceram Soc, 1975, 58(5-6): 217-221.
    [18] Sheppard LM. Manufacture of ceramics with microwave-the potential for economical production [J]. Am Ceram Soc Bull, 1998, 77(10): 1656-1662.
    [19]刘允超,烧结法微晶玻璃的研究[J].陶瓷研究,1996,11(3): 146-148.
    [20]王艳丽,沈菊云,陈学贤等,粉体烧结法制备堇青石基微晶玻璃的研究[J].玻璃与搪瓷,2001,29(2): 18-21.
    [21]马新沛,李光新,沈莲等,低熔点可加工微晶玻璃的研究[J].西安交通大学学报,1999,3(6): 50-54.
    [22] DC Tancera, AJ Carr. The sintering and mechanical behavior of hydroxyapatite with bioglass additions [J]. J Mater Sci: Mater Medicine, 2001, 12(1): 81-93.
    [23] Jerzy Zarxyki. Past and present of sol-gel science and technology [J]. JSol-gel Sci Tech, 1997, 8(1-3): 17-22.
    [24]李勃,周济,岳振星等,Sol-Gel法制备B2O3-P2O5-SiO2系低介玻璃陶瓷[J].无机材料学报,2000,15(6): 977-982.
    [25]杨觉明,雷聚超,严文,溶胶-凝胶法制备BAS玻璃陶瓷[J].西安工业学院学报,1999,19(4): 294-306.
    [26]曾庆冰,李效东,陆逸,溶胶-凝胶法基本原理及其在陶瓷材料中的应用[J].高分子材料科学与工程,1998,14(2): 139-145.
    [27] Nogami M, Nagasaka K, Kadono K, et al. Toughened glass-ceramics containing ZrO2 and Al2O3 prepared by the sol-gel process from metal alkoxides [J]. J Non-Cryst Solids, 1988; 100(1-3): 298-302.
    [28] Hamasaki T, Eguchi K, Koyanagi Y, et al. Preparation and characterization of machinable mica glass-ceramics by the sol-gel process [J]. J Am Ceram Soc, 1988; 71(12): 1120-1124.
    [29] BR Lawn, NP Padture, HD Cal. Making ceramics ductile [J]. Science, 1994, 263(5150): 1114-1116.
    [30] Lawn BR, Marshall DB. Hardness, toughness and brittleness: An indentation analysis [J]. J Am Ceram Soc, 1997, 62(7-8): 347-350.
    [31] Baik DS, No KS, Chun JSS. Mechanical properties of mica glass ceramics [J]. J Am Ceram Soc, 1995, 78(2): 1217-1222.
    [32] Baccaccini AR. Machinability and brittleness of glass-ceramics [J]. J Mater Proc Tech, 1997, 65(13): 302-304.
    [33] HHK Xu, S Jahanmir. Scratching and grinding of a machinable glass-ceramic with weak interfaces and rising T-curve [J]. J Am Ceram Soc, 1995, 78(2): 497-500.
    [34]李红.以钙云母为主相的高强度可切削牙科微晶玻璃的研究[D].成都:四川大学,2002.
    [35]付强.牙科CAD/CAM专用新型可切削陶瓷材料的初步研究[D].成都:华西医科大学,2000.
    [36]李红,周长忍,冉均国,高强度可切削齿科玻璃陶瓷的性能研究[J].中国生物医学工程学报,2005,24(6), 767-770.
    [37] Baik DS, No KS , Chun JSS, et al. A comparative evaluation method of machinability for mica-based glass-ceramics [J]. J Mater Sci, 1995, 30 (7): 1801-1806.
    [38]田清波. SiO2-2Al2O3-2MgO2F系可加工玻璃陶瓷制备工艺、相变机理及性能研究[D].沈阳:东北大学,2002.
    [39]赵运才,肖汉宁,何芳魁,玻璃陶瓷材料发展的回顾与展望[J].中国陶瓷, 2001,77(3): 40-43.
    [40]马轩祥.我国陶瓷修复的问题与展望[J].中华口腔医学杂志,1999,34(5): 261-263.
    [41] Jones DW,Chem C.Zirconia Ceramics as Dental Prosthetic [J]. J Can Dent assoc,1998,64(9): 648-650.
    [42] Piconi C, Maccauro G. Zirconia as a ceramic biomaterial [J]. Biomaterials. 1999, 20(1): 1-25.
    [43]金志浩,高积强,乔冠军,工程陶瓷材料[M].西安:西安交通大学出版社,2000: 100-104.
    [44]陈汉斌,牙科陶瓷的增韧补强方法及其应用现状[J].口腔材料器械杂志2007,16(3): 157-159.
    [45] Garvie RC, Hannick RH, Pascoe RT. Ceramics Steel [J]. Nature, 1975, 258(4): 703-706.
    [46]刘茜,陈玉如,袁启明,莫来石—氧化锆复合材料氧化锆的强韧化机理.硅酸盐学报,1992,20(2): 353-359.
    [47]周玉,陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社.1995: 263-282.
    [48]赵世柯,黄校先施鹰等,ZrO2相变设计改善耐火材料抗热震性的设想[J].耐火材料, 1999, 33(2): 104-106.
    [49] Davidge RW, Green TJ. Strength of two phase ceramic/glass materials [J]. J Mater Sci, 1968, 3(6): 629-635.
    [50] Evans AG, Faber KT. Toughening of ceramics by circumferential micro-cracking [J]. J Am Ceram Soc, 1981, 64(7): 394-399.
    [51] S Sridharan, M Tomozawa. Toughening of glass-ceramic by both transformable and transformed Zirconia [J]. J Non-Cryst. Solids, 1995, 182(3): 262-270.
    [52] G L Leatherman, M Towzzawa. Mechanical Properties of a Transformation-Toughened Glass-Ceramic [J]. J Mater Sci., 1990, 25(10): 4488-4494.
    [53] Uno T, Kasuga T, Nakayama S, et al. Microstructure of mica-based nanocomposite glass–ceramics [J]. J. Am. Ceram. Soc. 1993, 76(2): 539-541.
    [54] JG Ironside, MV Swain. Ceramics in dental restorations– a review and critical issues [J]. J Aus Ceram Soc , 1998, 34(2): 78-91.
    [55] International standard ISO 6872 for Dental ceramic. Ref. No. ISO 6872 - 1997(E).
    [56] S KhatibZadeh, M Samedani, B Eftekhari Yekta. Effect of sintering and melt casting methods on properties of a machinable fluor-phlogopite glass–ceramic [J]. J Mater Process Technol,2008, 203(1-3): 113-116.
    [57]王新,增韧氧化锆-玻璃复相材料的烧结及其性能[J].稀有金属材料及工程,1996,25(3): 10-12.
    [58] Clarke DR, Schwartz B. Transformation toughening of glass ceramic [J]. J Mater Rest, 1987, 2(6): 80-84.
    [59] Kasuga T., Yoshida M., Ikushima AJ. Bioactivi y of zirconia toughened glass-ceramics [J]. J Am Ceram Soc, 1992, 75(7): 1884-1888.
    [60]陈伟民,陈楷,邓再德等,ZrO2在微晶玻璃中的增韧作用[J].材料科学与工程, 1998, 16(3): 73-77.
    [61]秦燕军,牙科CAD/CAM加工用可切削云母微晶玻璃的研究,博士学位论文[D].西安:第四军医大学,2001.
    [62]吴舜,齿科可切削氟硅云母玻璃陶瓷的烧结法制备及着色研究,博士学位论文[D].西安:第四军医大学,2004.
    [63] Niihara K, Unal N, Nakahira A. Mechanical properties of (Y-TZP )-alumina-silicon carbide nanocomposites and the phase stability of Y-TZP particles in it [J]. J Mater Sci, 1994, 2 (2): 164-168.
    [64]闫洪,窦明民,李和平,二氧化锆陶瓷的相变增韧机理和应用[J].陶瓷学报,2000,3(1): 46-50.
    [65]王昕,谭训彦,尹衍升,纳米复合陶瓷增韧机理分析[J].陶瓷学报, 2000, 21(2): 107-110.
    [66]柴枫,徐凌,廖运茂,不同氧化锆含量对氧化锆增韧的纳米复合陶瓷(Al2O3-nZrO2)基体性能影响的研究[J]. Journal of Oral Science Research ,2002,18(3): 158-161.
    [67]陈永平,常见齿科全瓷材料体系的增强增韧[J].中国口腔种植学杂志,2002, 7(4): 184-190.
    [68] Stevens R. An introduction to zirconia: zirconia and zirconia ceramic [M]. Twickenham: Magnesium electrum, 1986.
    [69] Choi SY, Ahn JM. Viscous sintering and mechanical properties of3Y-TZP-reinforced LAS glass–ceramic composites [J]. J. Am. Ceram. Soc. 1997, 80(12), 2982–2986.
    [70] M Montazerian ,P Alizadeh,B Eftekhari Yekta. Pressureless sintering and mechanical properties of mica glass–ceramic/Y-PSZ composite [J]. Journal of the European Ceramic Society, 2008, 28(14): 2687-2692.
    [71]王继辉,舒庆琏,邓京兰,结构陶瓷断裂韧性测试方法的研究[J].武汉工业大学学报,1997,12(2): 15-20.
    [72]田雨霖,陶瓷材料的显微结构(Ⅲ)[J].硅酸盐通报,1992, ll(1): 56-60.