西藏墨竹工卡县甲玛铜多金属矿矿床地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏甲玛铜多金属矿床位于特提斯-喜马拉雅构造域冈底斯-念青唐古拉(地体)板片中南部,主矿体(矽卡岩型矿体)赋存于甲玛弧后盆地上侏罗统多底沟组灰岩、大理岩与下白垩统林布宗组砂板岩、角岩的层间构造带内,矿体受继承于层间构造的区域性推覆构造、矿区滑覆构造及其所产生的次级褶皱控制。矿体走向北西西,倾向北北东,整个矽卡岩型矿体走向方向长约3000米,倾向方向延伸大于2000米,矿体呈层状、厚板状、似层状、透镜状,整体形态呈上陡下缓的“椅状”。主矿体位于47-0-56线之间,为甲玛矿区矽卡岩型矿体的核心部位。通过矿石组构、矿物共生组合、矿物成分等特征的研究,将该矿床成矿期划分为岩浆期、矽卡岩期、热液成矿期和表生期,其中热液成矿期又划分为铜钼硫化物阶段、铜硫化物-硫盐矿物阶段、铜铅锌硫化物阶段及金成矿阶段,形成一套典型的岩浆期后热液的成矿组合,矿物组合从高温组合到低温组合。
     甲玛铜多金属矿床是冈底斯中段产出的重要矿床,由于其品位富,矿床规模大,长期来受到众多地质学家的关注。该矿床的成因问题一直以来是众多学者争论的焦点,前人提出的成矿理论观点主要集中在喷流成因与岩浆热液交代成矿理论。本文通过对甲玛铜多金属矿矿床地球化学特征的研究,详细研究了岩矿石的岩石地球化学特征、微量元素地球化学特征、同位素地球化学特征、流体包裹体地球化学特征、成岩成矿年代学特征等,提出矿床类型为斑岩-矽卡岩型,而非海底喷流沉积成因的认识,矿床形成于中新世后碰撞晚阶段地壳伸展与断陷时期(<18Ma),与冈底斯成矿带中主要斑岩型铜钼矿床有着相同的地球动力学背景,以上认识为区域找矿指明了方向。
The Jiama polymetallic copper deposit locates in mid-south of Gangdese-Nyainqentanglha plate ,Tethys-Himalayan tectonic megaprovince, Tibet. Main(Skarn ore body) ore body is hosted in stratiform structural zone between limestone、marble of the upper Jurassic and sandy slate、chert of the low Cretaceous, and is controlled by sub-fold produced regional thrust nappe structure and ore field gliding nappe structure. The length is over 3000m in strike with NWW and over 2000m in dip with NNE. The morphology of ore body is stratiform、thick plated、beded、lenticular ,and the whole form is“chair”.Main ore body located in line 47-0-56 is hard core of skarn ore body in Jiama ore field. Metallogenic epoch can be setted off magmatic、skarn、thermal metallogenic epoch which also can be setted off Cu-Mo sulphide phase、Cu sulphide-sulphate phase、Cu-Pb-Zn sulphide phase and Au metallogenic phase、supergene metallogenic epoch, through studying texture and structure of ores、paragenesis of minerals and mineral components, and forms a typical thermal metallogenic combination.
     The Jiama polymetallic copper deposit was regarded as high grading and big scale. Genetic problem of the deposit was being a controversy focus which focus on sedimentary exhalative metallogenic theory and magmatic contact metasomatic metallogenic theory. The article puts forward that Jiama polymetallic copper deposit is not a Sedex deposit,but a porphyry-skarn deposit, through the study of rock geochemical characteristic、trace element geochemical characteristic、stable isotope geochemical characteristic、??d inclusion geochemical characteristic、metallogenic chronology and so on, and that the deposit formed The crust extension and rifting occurring in the late post_collisional stage since Miocen (<18Ma) ,holding the same dynamical background to earth with mian porphyry Cu-Mo deposits in Gangdese metallogenic zone. Their cognitions point out the way of finding similar deposits in region.
引文
陈培荣,陈小明,倪培等.1996.盐源斑岩铜矿流体包裹体中黄铜矿子矿物的发现[J].科学通报,41(7):633~635.
    杜光树,姚鹏,潘凤皱等.1998.喷流成因矽卡岩与成矿——以西藏甲马铜多金属矿床为例[M].成都:四川科技出版社.
    董国臣,莫宣学,赵志丹等.2005.拉萨北部林周盆地林子宗火山岩层序新议[J].地质通报,24(6):550~557.
    冯孝良,管仕平,牟传龙等.2001.西藏甲马铜多金属矿床的岩浆热液交代成因:地质与地球化学证据[J].地质地球化学,29(4):41~48.
    高顺宝,郑有业.2006.西藏驱龙超大型斑岩铜矿床成矿作用的地球化学控制[J].地质科技情报,25(2):42~45.
    高永丰,侯增谦,魏瑞华.2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义[J].岩石学报,19(3):419~427.
    苟金. 1994.对拉萨地区叶巴组时代归属的新认识[J].西藏地质,l1:1~6.
    郭宗山.1957.扬子江下游某些矽卡岩型铜矿床[J].地质学报,31(1).
    郝杰,李曰俊.1997.日喀则残留型弧前盆地的构造与沉积演化[J].中国科学院研究生院学报,14(1):51~56.
    侯增谦,杨竹森,徐文艺等.2006.青藏高原碰撞造山带:I.主碰撞造山成矿作用[J].矿床地质,25(4):338~353.
    侯增谦,曲晓明,杨竹森等.2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):631~646.
    黄懿,裴荣富,任冠政等.1957.论大冶式铁矿[J].地质学报,37(2).
    李红阳,杨秋荣,李英杰.2006.现代成矿理论[M].北京:地震出版社.
    李红阳,李英杰,侯增谦等.2005.安徽新桥块状硫化物矿床地球化学特征[J].地质科学,40(3):337~345.
    李金高,王全海,郑明华等.2001.西藏Sedex型矿床赋矿盆地性质对成矿元素的制约作用[J].沉积与特提斯地质,21(4):12~20.
    李光明,刘波,屈文俊等.2005.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:——来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学,29(4):482~490.
    李光明,芮宗瑶,王高明等.2005.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re_Os同位素年龄及其意义[J].矿床地质,24(5):482~487.
    李光明,王高明,高大发等.2002.西藏冈底斯南缘构造格架与成矿系统[J].沉积与特提斯地质,22(2):2~7.
    李光明,秦克章,丁奎首等.2006.冈底斯东段南部第三纪矽卡岩型Cu-Au±Mo矿床地质特征、矿物组合及其深部找矿意义[J].地质学报,80(9):1408~1419.
    连玉,徐文艺,杨丹等.2008.西藏冈底斯甲马和南木矿床流体包裹体SR-XRF研究[J].岩石矿物学杂志,27(3):186~196.
    毛国政,胡敬仁,谢尧武. 2002.拉萨地区叶巴组的特征及形成环境[J].西藏地质,20:12~18.
    孟祥金,侯增谦,李振清.2006.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报,80(4):555~558.
    欧阳自远.1958.中国的矽卡岩型矿床[J].地质科学,第2期.
    潘凤雏,邓军,姚鹏等.2002.西藏甲马铜多金属矿床矽卡岩的喷流成因[J].现代地质,16(4):360~364.
    彭勇民,姚鹏,李金高.2001.西藏甲马弧内盆地的形成演化[J].沉积与特提斯地质,21(2):102~107.
    彭勇民,姚鹏,李金高.2000.西藏甲马弧内盆地甲马矿区晚侏罗世海绵礁的发现[J].地球学报,21(3):329~333.
    彭勇民,姚鹏,李金高.2001.西藏甲马铜多金属矿区上侏罗统-白垩系层序地层与成矿[J].地质论评,47(6):585~588.
    曲晓明,辛洪波.2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报,25(7):793~799.
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,20(4):356~364.
    任云生,粟登逵,张金树.2002.西藏甲马铜多金属矿床金的叠加成矿[J].吉林大学学报,32(3):226~228.
    任云生,张金树,范文玉等.2002.西藏甲马铜多金属矿床远景预测[J].地质与勘探,38(5):30~32.
    芮宗瑶,侯增谦,李光明等.2006.冈底斯斑岩铜矿成矿模式[J].地质论评,52(4):460~465.
    芮宗瑶,李光明,王龙生. 2004.青藏高原的金属矿产资源[J].地质通报,23(1):20~23.
    佘宏全,丰成友,张德全等.2006.西藏冈底斯铜矿带甲马矽卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,22(3):690~696.
    佘宏全,丰成友,张德全等.2005.西藏冈底斯中东段矽卡岩铜_铅_锌多金属矿床特征及成矿远景分析[J].矿床地质,24(5):509~518.
    孙鸿雁,林品荣,方慧等.2004.西藏冈底斯东段铜多金属成矿带综合物化探技术有效性试验[J].物探与化探,28(2):102~105.
    王方国,李光明,林方成.2005.西藏冈底斯地区矽卡岩型矿床资源潜力初析[J].地质通报,24(4):379~385.
    王小春,周维德,李作华等.2006.西藏冈底斯带斑岩铜矿勘查的现状、走向和相关建议[J].地质与勘探,42(1):30~32.
    王全海,王保生,李金高等.2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,21(1):36~40.
    魏菊英,王关玉.1988.同位素地球化学[M].北京:地质出版社.
    杨战兵,赵惠德,任新师等.2007.西藏自治区墨竹工卡县大甲马铜多金属矿区高精度磁测报告[C].山西:山西省地质调查院.
    杨志明,谢玉玲,李光明等.2005.西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J].地质与勘探,41(2):21~25.
    杨时惠.1995.西藏甲马赤康多金属矿床金银铋钴镍赋存状态及其矿物学特征研究[J].矿物岩石,15(1):26~34.
    姚鹏,李金高,顾雪祥等.2006.从REE和硅同位素特征探讨西藏甲马矿床层状矽卡岩成因[J].岩石矿物学杂志,25(4):306~312.
    姚鹏,顾雪祥,李金高等.2006.甲马铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义[J].成都理工大学学报,33(3):286~292.
    姚鹏,郑明华,彭勇明等.2002.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,48(5):469~478.
    姚鹏,王全海,李金高.2002.西藏甲马—驱龙矿集区成矿远景[J].中国地质,29(2):198~201.
    姚鹏,杜光树.1999.西藏甲马多金属矿床容矿岩石的地球化学特征及其成因初步研究[J].特提斯地质,23:47~56.
    阴家润等.1998.拉萨地块叶巴组内中侏罗世双壳类动物群及其地理意义[J].《中国区域地质》,(2).
    阴家润,苟金,裴树文等. 1998.拉萨地块叶巴组内中侏罗世双壳类动物群及其古地理意义[J].《中国区域地质》,17(2):132~136.
    袁万明,侯增谦,李胜荣等.2001.西藏甲马多金属矿区热历史的裂变径迹证据[J].中国科学(D辑),31(增刊):118~121.
    赵一鸣,林文蔚,毕承恩等.1990.中国矽卡岩矿床[M].北京:地质出版社.
    Allegre C J and 34 others. 1984. Structure and evolution of the Hi-malayan_Tibet orogenic belt[J]. Nature, 307: 17~22.
    Baker T and Lang J R. 2003. Reconciling fluid inclusions, fluids processand fluid source in skarns: An example from the Bismark skarn de-posit, Mexico[J]. Mineralium Deposita, 38: 474~495.
    Baker T, Van A E, Ryan C, et akl. 2004. Composition and evolution of ore fluids in amagmatic_hydrothermal skarn deposit [J]. Geol. (Boulder), 32(2): 117~120.
    Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoicvolcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamic significance [J]. EarthPlanet. Sci. Lett. 79: 281~302.
    Durr S B. 1996. Provenance of Xizang fore_arc basin clastic rocks (Cre-taceous, south Tibet)[J]. Geol. Soc. Am. Bull., 108: 669~684.
    Gaetani M and Garzanti E. 1991. Multicyclic history of the northern In-dia continental margin(northwestern Himalaya)[J]. Am. Assoc. Pet.Geol.Bull,75:1427~1446.
    Harrsion T M, Copeland P and Kidd W S F, et al. 1992. Raising Tibet [J]. Science, 288: 1 663~1 670.
    Harrison T M, Grove M, McKeegan K D, et al. 1999. Origin andepisodic emplacement of the Manaslu intrusive complex, central Hia-malaya[J]. Petrol., 40: 3~19.
    Mitchell A.H.G,Garson M S. 1981.Mineral deposits and global tectonic settings[M].Academic press,100~140.
    Pierce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotra-verse Lhasa to Golmud[M]. Londm: Phil. Trans. Roy. Soc. Lond., A327: 203~213.
    Sawkins F.J.,1984.Metal deposits in relation to plate tectonics[M].Springer-Verlag,1~110.
    Shinohara H and Hedenquist J W. 1997. Constraints on magma de-gassing beneath the Far Southeast porphyry Cu_Au deposit, Philip-pines[J]. J. Petrol.,38:1741~1752.
    Sotnikov, Vitaliy I., Berzina, Anita N, Economou-Eliopoulos, Maria; Eliopoulos, Demetrios G. , 2001
    Streck J M, Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[ J] . Geolo- gy, 1998, 26: 523-526
    Takagi T, Tsukimura K. Genesis of oxidized and reduced type granite[J]. Economic Geology, 1997, 92: 81-86
    Tapponnier P, Molna P. 1976.Slip-line field theory and large scale continental tectonics. Nature, 264(5584), 319~324
    Tapponnier P, Peltzer G, Le-Dain A Y, et al . 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10 :611~616
    Taylor D, Leeuwen T U. Porphyry-type deposits in southern Asia. Mining Geology(Specials issue), 1980, 8: 95–116
    Titley S R, Beane R E. Porphyry copper deposits [J]. Economic Geology, 1981, 75TH Anniv Vol: 214-269
    Tomlinson, Andrew J, Dilles, John H, Maksaev, Victor. Application of apatite (U-Th)/Hethermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile. Economic Geology and the Bulletin of the Society of Economic Geologists, 2001, Vol.96, No.5, pp.1307-1309
    Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[ J]. Nature, 1993, 364: 50-54.
    Vance D, Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya. Geology, 27(5):395~398
    Van der Hilst R D, Widiyantoro S, Engdahl E R. Evidence for Deep Mantle Circulation from Global Tomography [J]. Nature, 386:578~584
    Van der Voo R, Spakman W, Bijwaad H. 1999. Mesozoic subducted slabs under Siberia[J]. Nature, 397: 246~249
    Vargas R, Ricardo, Gustafson, et al, M Alexandr Ore breccias in the Rio Blanco-Los Bronces porphyry copper deposit, Chile. Special Publication - Society of Economic Geologists, 1999, Vol.7, pp.281-297
    Venable, Margaret E. Mineralization in northeast Nicaragua; known deposits and exploration potential. Special Publication - Society of Economic Geologists, 2001, Vol.8, pp.339-347
    Voggenreiter W., Hotzl H. and Mechie J. 1998. Low-angle detachment origin for the Red sea rift system.tectonophysics.150(1-2), 51~75
    von Quadt, Albrecht, Peytcheva, et al. The Elatsite porphyry copper deposit in the Panagyurishte ore district, Srednogorie Zone, Bulgaria; U-Pb zircon geochronology and isotope-geochemical investigations of magmatism and ore genesis. Geological Society Special Publications, 2002, Vol.204, pp.119-135.
    Watanabe, Yasushi, Hedenquist, Jeffrey W. Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Economic Geology, 2001, Vol.96, No.8, pp.1775-1797
    Weber, Bodo, Lopez Martinez, Margarita. Sr, Nd, Pb isotopes and Ar-Ar dating of the "El Arco" porphyry copper deposit, Baja California; evidence for Cu mineralization within an oceanic island arc. Abstracts with Programs - Geological Society of America, 2002, Vol.34, No.6, pp.88
    White D E . Environments of generation of some basemetal ore deposits [J]. Econ Geol, 1968, 63, (4): 301-335
    Widiyantoro S, Van der Hilst R D. 1996. The slab of subducted lithosphere beneath the Sunda arc, Indonesia [J]. Science, 271:1566~1570
    Wild M J, Tabner B J, Macdonald R. 1999.ESR dating of quartz phenocrysts in some rhyoliticextrusive rocks using Al and Ti impurity centres. Quaternary Sci. Rev., 18(13): 1507~1514
    Zartman,R.E. and Doe,B.R. 1981. Plumbotectonics—the model. Tectonophysics,vol.75:135~162.
    Z .Qiang, Z .Wenyao, X, Yonqin . 1999.Global plate Motion Models Incorporating the velocity field of ITRF96 . G. R . Lett, 26(18):2813~2816
    Zhao W, Nelson K D, Project INDEPTH Team. 1993.Deep seismic reflection evidence for continental underthrusting beneath S. Tibet[J]. Nature, 366:557~559