蜀南地区HBC区块茅口组缝洞型储层描述技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油与天然气勘探程度的不断提高,石油与天然气的勘探方向逐渐由常规油气藏转变为特殊油气藏,而缝洞型油气藏已成为一个重要的勘探新领域。据资料统计,裂缝性油气藏储量占我国油气探明储量的三分之一,“九五”期间全国可动用的油气储量约四分之三为低孔低渗、致密、裂缝型油气藏储量。因此,裂缝性油气藏的勘探开发,对我国今后油气勘探增储上产具有重要意义。
     本文以蜀南地区HBC区块茅口组缝洞型储层为研究对象,开展缝洞型储层描述的技术研究,为下二叠统气藏的勘探提供新的技术思路。利用高信噪比和高分辨率的HBC三维地震资料以及工区内丰富的地质、钻井、录井、测井及测试等资料,为进一步精细地描述下二叠统裂缝发育带,寻找有利的缝洞型气藏提供了有利条件,对茅口组储层裂缝发育带的分布规律研究奠定了良好的地震预测基础,并对HBC构造下二叠统气藏的深层次勘探开发有着重要的意义。
     论文利用相干技术、地震反演技术、地震属性分析相结合,预测HBC区块下二叠统茅口组有利裂缝发育带空间分布,为优选勘探目标提供可靠依据。工作中试验了多种技术方法,通过多种方法的比较分析,最终认为在该区能对茅口组缝洞储层预测取得良好效果的技术有以下几种技术:储层地震反演技术、叠后地震属性裂缝检测技术、三维地震相干体技术、叠前地震属性裂缝检测技术、地震三维可视化技术。充分利用三维地震资料的优势,应用三维可视化技术并结合实际的地质、测井资料,通过精细的叠前、叠后地震属性分析等方法,找出对下二叠统茅口组裂缝分布最敏感的叠前、叠后地震属性参数,对下二叠统茅口组储层裂缝发育带作综合描述,并总结其主要裂缝发育带的分布规律,为该区的勘探开发提供可靠的目标。
     在论文研究过程中,主要取得了以下进展:
     1、首次将逆断层作为储层地震反演的约束条件,提出了逆断层的速度反演。由于本区块逆断层十分发育,茅口组缝洞型储层主要分布于逆断层附近,在进行缝洞型储层预测时,将逆断层作为储层地震反演的约束条件,能够客观反映逆断层对储层分布的控制作用。
     2、综合地质与地震资料,结合逆断层地震精细反演和地震敏感属性分析可以实现缝洞型储层半定量和定量描述,在实际应用中取得了比较好的效果。
     3、茅口组层内裂缝及溶洞发育,优选的相干属性较好表现出裂缝的发育情况;而叠前裂缝检测因目的层深度较大,检测效果不是很理想。
     4、随着计算机技术的迅猛发展,三维可视化已成为三维地震勘探的必要手段。利用三维可视化技术将缝洞识别的敏感属性体进行缝洞储层的三维雕刻,可以清晰的展示了缝洞体的空间分布。
     5、优选了有效进行茅口组缝洞体识别的地震综合预测方法,并总结归纳了茅口组缝洞体的地震识别模式,为碳酸盐岩的缝洞型储层描述提供新的技术思路。
With the constant progress of the oil and gas exploration techniques, exploration target is changed, from general to special. Fracture-Cavity Reservoir becomes a key and new exploration aera. It is from statistical data that fracture-cavity reservoir is third of aware reservoir in China. During the "ninth-five", the three fourths of practical reservoir in our country is low porosity and permeability, dense and fractured. So, the exploration of fractured reservoir is very important for broadening reservoir and outcome in the fruture oil and gas exploration.
     In this thesis,Fracture-Cavity Reservoir in Maokou Zu is research target and fracture-cavity reservoir description technique research is discussed. It can offer new ideas for the exploration of Lower Permian. By HBC 3d seismic data with high signal-to-noise ratio and high resolution, and the rich geology,well drilling, logging and test data, it can describe fracture vegetal area finely and offer advantages for the exploration favorable fracture-cavity gas reservoir. Also, it settle good seismic prediction base for the monographic study about the distributoin of fracture vegetal area in Maokou Zu. It is very important for the futher exploratory development of HBC structure Lower Permian gas reservoir.
     The main methods are coherence tecnique, seismic inversion and seismic property analysis which are used in this thesis . It can predict the steric distributoin of Maokou Zu fracture vegetal area in HBC structure Lower Permian and offer reliable references for optimizing the exploration objects. Many tecniques are tried in this work. By the comparison and analysis, finally, these tecniques which can make Maokou Zu fracture-cavity reservoir prediction better are as follows: reservoir seismic inversion, fracture detection with poststack seismic property , 3d seismic coherence, fracture detection with prestack seismic property and 3d seismic visualization. Using 3d seismic data fully and 3d visualization tecnique, also actual geology and logging data, prestack and poststack seismic property are analysed carefully. Then it can find out the delicate prestack and poststack seismic property parameters of Lower Permian Maokou Zu fracture distribution and describe comprehensively Lower Permian Maokou Zu reservoir fracture. Finally, it can sum up the distribution of main fracture vegetal area and offer reliable objects for the exploration.
     By this research, progress is as follows: firstly, reverse faults are the restraint conditions when predicting fracture-cavity reservoir at the first time and velocity inversion of reverse faults is proposed. Because of the rich reverse faults and fracture-cavity reservoir near reverse faults, reverse faults are the restraint conditions when predicting fracture-cavity reservoir. It can be reflexed objectively that reverse faults dominate the reservoir distribution. Secondly, using geology and seismic data, delicate seismic inversion with reverse faults, and seismic sensible property, the quantitative and semi quantitative description of fracture-cavity reservoir can be realized. And some good effects have been gained during the practical application. Thirdly, because of the rich fractures and limestone caves, preferred coherent properties can show the fracture developmental situation well. But, because of the deep intended zone, the effect of prestack fracture detection is not good. Fourthly, with the rapidly development of computer tecnique, 3d visualization becames the indispensable measure in 3d seismic exploration. Using 3d visualization, the sensible property of fracture-cavity recognition can be 3d carved and the spatial distribution of fracture-cavity can be showed clearly. Finally, seismic comprehensive prediction method which can identify Maokou Zu fracture-cavity effectively, is preferred. And seismic recognition mode of Maokou Zu fracture-cavity has been sum up. The new technique idea is offered for the carbonate fracture-cavity reservoir description.
引文
[1]苏培东,秦启荣,黄润秋.储层裂缝预测研究现状与展望[J].西南石油学院学报,2005(10).
    [2]王志刚.塔里木盆地塔中地区奥陶系碳酸岩盐缝洞系统预测技术[D].中国地质大学(北京),2007.
    [3]李亚林,巫芙蓉等.四川盆地储层裂缝发育带预测方法研究[R].四川石油管理局,2005,12.
    [4]朱仕军等.合江、临南构造茅口组储层地震预测解释研究报告[R].西南石油大学,2006,11.
    [5]文晓涛.缝洞储层的综合预测[D].成都理工大学,2003.
    [6]贺振华,黄德济等.复杂油气藏地震波场特征方法理论及应用[M].四川:四川科学技术出版社,1999.
    [7]贺振华,黄德济等.缝洞储层的检测和预测[J].探勘地球物理进展,2003.
    [8]梁虹等.四川盆地威远构造地震详查总结报告[R].四川石油管理局地球物理勘探公司,2006,5.
    [9]晏礼等.四川盆地川中——川南过渡带二维地震老资料连片处理解释总结报告[R].四川石油管理局,2004,9.
    [10]廖玲等.川中——川南过渡带界石场——永安桥地震老资料连片处理解释总结报告[R].四川石油管理局,2004,10.
    [11]熊艳等.HBC大足区块地震老资料叠前处理及特殊处理解释报告[R].四川石油管理局成都物探研究中心,2001.
    [12]向鼎璞等.四川盆地川中——川南过渡带区域控制剖面勘探总结报告[R].四川石油管理局,1989,4.
    [13]马玉春等(译).用AVO等方法检测裂隙:解析基础和实用解[J].国外油气勘探,1998,10.
    [14]张翠兰(译).用于储层预测和检测的地震属性技术[J].国外油气勘探,1998,10.
    [15]中国石油集团东方地球物理公司,中国石油学会物探专业委员会.地震勘探方法原理——地震资料解释分册[C].2006,12.
    [16]洪有密.测井原理与综合解释[M].山东:中国石油大学出版社,2007,10.
    [17]孙家振,李兰斌.地震地质综合解释教程[M].湖北:中国地质大学出版社,2002,7.
    [18]赵政璋,赵贤正,王英民等.储层地震预测理论与实践[M].北京:科学出版社,2005,5.
    [19]闫晓芳,陈景阳.塔中地区奥陶系裂缝性碳酸盐岩储集层描述[J].新疆石油天然气,2005,1(3):21-27.
    [20]杨凤丽,王清,沈财余.碳酸盐岩储层地震信息响应及横向预测[J].同济大学学报(自然科学版),2005,33(9):1235-1239.
    [21]苟量,彭真明.小波多尺度边缘检测及其在裂缝预测中的应用[J].石油地球物理勘探,2005,40(3):309-313.
    [22]佘德平等.相干数据体及其在三维地震解释中的应用[J].石油物探,Vol.37.No.4.1998.
    [23]陈广坡,潘建国,陶云光.碳酸盐岩岩溶型储层综合预测评价技术的应用及效果分析[J].石油物探,2005,44(1):33-36.
    [24]陈清华,刘池阳,王书香等.碳酸盐岩缝洞系统研究现状与展望[J].石油与天然气地质,2002,23(2):19-201.
    [25]程浪洪.塔里木盆地轮古西地区多地震属性储层综合预测[J].油气地质与采收率,2007,14(3):70-72.
    [26]冯凯,陈祖庆,查朝阳.基于叠前地震资料预测碳酸盐岩复合岩性油气藏[J].大庆石油地质与开发,2006,25(05),96-99.
    [27]何军,王奕.模型正演技术在碳酸盐岩储层预测研究中的应用[J].江汉石油职工大学学报,2006,19(02),03-05.
    [28]贺振华,黄德济.缝洞储层的地震检测和预测[J].勘探地球物理进展,2003,26(2):79-83.
    [29]贾疏源.中国岩溶缝洞系统油气储层特征及其勘探前景[J].特种油气藏,1997,4(4):1-5.
    [30]景件恩,魏文博,梅忠武,等.裂缝型碳酸盐岩储层测井评价方法—以塔河油田为例[J].地球物理学进展,2005,20(1):78-82.
    [31]周文等.裂缝型油气储集层评价方法,成都:四川科学技术出版社,1998.
    [32]Howard,J.H.Description of Natural Fracture System for Quantitative Use in Petroleum Geology[J].AAPG,Bulletin,Vol.74,No.2100,1990.
    [33]Hutchinson,J.E.Fractals and Self-Similarity[J].Indiana Univ Math30,1981,713-747
    [34]Mallat S.and Hwang W L.Singularity detection and processing with wavelets[J].IEEE Transactionson Information Theory,1992,38(2).
    [35]15 thWorld Petroleum Congress Q IN Qirong.Quantitative prediction of fracture distribution in volcanic reservoir in 7 th area,Karamay Oilfield,1997[C].
    [36]Wang Shixing,Guan Luping,and Zhu Hailong.Prediction of Fracture-Cavity System in Carbonate Reservoir:A Case Study in the Tahe Oilfield[J].applied geophysics,2004.
    [37]Danielp,Hampson james,Schuel ke,et al.Use of Multiatt ribute Transforms to Predict Log Properties from Seismic Data[J].Geophysics,2001.
    [38]Cinco H,Samaniego F,Dominguez N.Transient pressure behavior for a well with a finite-conductivity vertical fracture[J].Society of Petroleum Engineers Journal,1978,18(8):253-264.
    [39]LEE1Sheng-tai,Brockenbrough J R1 A new app roxi2 mate analytic solution for finite conductivity vertical fractures.Society of Petroleum Engineers Formation Evaluation,1986,18(2):75-88.