面向事故调查的火灾数值再现方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾是重大灾害之一,常造成大量的财产损失和人员伤亡。随着火灾理论研究的不断深入和数值计算方法的不断完善,用数值模拟手段来进行火灾科学研究成为了潮流。火灾调查是消防工作的重要组成部分,但在现阶段,起火部位的认定很大程度上依靠调查人员的经验,缺少相应的技术验证;专业的理论知识、抽象的认定结论不容易被受灾群众理解和接受。在进行全尺度火灾实验成本高、周期长,进行小尺度火灾实验难以满足所有无量纲相似要求的情况下,进行计算机数值模拟火灾实验,时间周期短、经济成本低、可以方便的进行对比实验,是一种新兴的、有效的火灾调查手段。
     本文以火灾数值模拟为基础,对火灾事故数值再现技术及其在火灾调查领域的应用展开了以下研究:
     1)提出了火灾事故数值再现正交优化方法。由于火灾现场的破坏性及复杂性,火场中具有许多不确定因素。文中对火灾中常见的因素进行了分析,并分析了几种模拟结果的评价方法。在火灾再现数值模拟过程中,引入正交方法进行实验优化设计,提高了数值再现的效率。
     2)提出了针对薄壁结构的等效参数法。火场中经常有薄壁结构,比如吊顶和分隔墙等,它们烧穿的时候对火灾发展影响很大。由于它们的壁厚远小于常用的网格尺度,若对这些结构进行直接建模,计算量非常大。文中提出了等效参数法:通过放缩壁厚的几何尺寸以适应常用网格尺度,由此减少计算量;同时改变壁面材料的参数,以保证等效变换前后的模拟结果的一致。固体热解过程的分析验证和数值实验验证的结果都表明了等效参数法是可行的。
     3)对三个典型的火灾事故进行了模拟实验研究,并应用上述两方法,进行了数值再现研究。火灾数值再现得到的数据和火灾现场勘查报告、现场照片或模拟实验的比对,表明了模拟结果是可信的,从而验证了这两个方法的有效性和调查结论中起火位置判断的合理性。基于火灾再现基础上的不同工况下的比对研究,量化了消防设施对火灾的抑制作用和对人员逃生的作用。
     火灾事故数值模拟可以还原火灾事故的过程,还可以对初始状态作不同假设,比较其结果的区别,对于责任认定,起火部位、起火点的确定有很好的辅助作用。将数值模拟技术引入火灾调查,可以协助解决火灾调查中难题,应用前景广阔。
Fire is one of the most serious disasters, which often causes some of the greatest losses to property and human life around the world. It had been a trend that numerical simulation method is used in fire science research because fire theory and numerical method was deepened. Fire investigation is a very important work in fire bureau. At present, the cognizance of ignition source, to a great extent, depend on the experience of fire investigator because it lacks of corresponding technical verification. And the abstract conclusion based on professional theory is not easy to be understood and accepted by common people. Full scale fire test costs much and takes long time and small scale fire test is hard to meet all the dimensionless similar requirements. Computer fire numerical test can take less time and cost less. Furthermore, it can easily make contrast tests. So it is a new-emerging and effective method for fire investigation.
     Based on fire numerical simulation, the fire numerical reconstruction technique and its application on fire investigation were studied here as follows:
     1) Proposed fire numerical reconstruction orthogonal optimum method. Because the fire scene is often destroyed and complicated, there are many uncertain factors. The common factors in fire were analyzed and several evaluation methods were introduced. Then, the orthogonal optimum method was introduced in experiment design in order to improve the numerical reconstruction efficiency.
     2) Proposed equivalent parameter method for thin wall modeling. There are thin walls in fire scene, such as ceiling and partition, which change the fire process when they are burning though. The thickness of thin walls is much thinner than grid length used in building fire field simulation. So calculation burden is heavy when the thin wall is modeled directly. An equivalent parameter method was proposed in the paper. In this method while the wall thickness was magnified to fit the normally used grid length in order to reduce the calculation amount, the material properties were changed to make the simulation results unchanged. The analysis on solid phase model and numerical test validated that the method was correct and practical.
     3) Three typical fire cases, one of which was a real fire test, were numerically reconstructed using the two methods above. The simulation results were compared with site investigation report and photos. The comparing results showed that the simulations were reliable, and so the two methods and the cognizance of ignition source. The intercomparison of fire numerical simulations on different conditions quantified the effects of fire facilities on fire control and people escape.
     Fire numerical simulation can reconstruction fire development and compare the influences of different settings. It has auxiliary function when cognizing the legal liability, the ignition location and the ignition point. Numerical simulation technique on fire investigation can help to solve many problems and has a broad prospect.
引文
[1] National Fire Data Center. Socioeconomic factors and the incidence of fire[R]. United States Fire Administration, Federal Emergency Management Agency,1997 June Report NO FA170
    [2]杨立中,江大白.中国火灾与社会经济因素的关系[J].中国工程科学, 2003, 5(2): 62-67
    [3]陈洪文.火灾调查学[M].江西:江西科学技术出版社, 1989
    [4]任松发,任汉信,柯润.火灾调查模拟实验研究[J].武警学院学报, 2003, 19(1): 38-41
    [5]朱明华.火灾原因调查方法及应用[J].武警学院学报, 2007, 23(4): 67-69
    [6]董文凯.火灾事故调查工作中的难点分析[J].科技资讯, 2006,27: 64
    [7] P Mark, L Sandercock. Fire investigation and ignitable liquid residue analysis—A review: 2001–2007[J]. Forensic Science International 176 (2008) 93–110
    [8]方坤.计算流体力学的几种常用软件[J].煤炭技术, 2006, 25(12):59-60
    [9]杨君涛,魏东,李思成等.基于油罐火灾数值模拟的模型选取与分析[J].中国安全科学学报2004, 14(1): 91-96
    [10]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002
    [11] Kevin M, Anthony H. Numerical Simulation of the Howard Street Tunnel Fire[J]. Fire Technology, 2006 (42): 273–281
    [12] Madrzykowski D, Vettori R L. Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington DC May 30 1999[M]. Gaithersburg: National Institute of Standards and Technology, NISTIR 6510, April 2000
    [13] Madrzykowski D, Fomey G P, Walton W D. Simulation of the Dynamics of a Fire in a Two-Story Duplex Iowa, December 22, 1999[ EB/OL]. http://fire. nist. gov/CDPUBS/NISTIR-6854/duplex. html, 2005-12-25
    [14] Vettori R L, Madrzykowski D, Walton W D. Simulation of the Dynamics of a Fire in a One-Story Restaurant, Texas, February 14, 2000[EB/OL]. http://fire. nist. gov/bfrlpubdfireOl/art 068. html,2005-12-25
    [15] Madrzykowski D, Bryner N P, Kerber S. NIST Station Nightclub Fire Investigation Physical Simulation of the Fire[J]. Fire Protection Engineering, 2006, Summer: 31-46
    [16] NIST NCSTAR 1A, Final Report on the Collapse of World Trade Center Building 7, Federal Building and Fire Safety Investigation of the World Trade Center Disaster, November, 2008
    [17] Shen TS, Huang YH, Chien SW. Using fire dynamic simulation (FDS) to reconstruct an arson firescene[J]. Building and Enviroment, 43(2008): 1036-1045
    [18]王金玲,付云飞.着火房间适宜排烟风速确定的数值模拟[P]. 2007消防科技与工程学术会议论文集, 569-571
    [19]周慈,杨振宏,郭进平.高层建筑火灾烟气流动性状的数值模拟[J].辽宁工程技术大学学报2003, 22(4): 524-526
    [20]姜蓬,邱榕,蒋勇.基于数值模拟的某大厦特大火灾过程调查[J].燃烧科学与技术, 2007, 13(1): 76-80
    [21]车强,周心权.真实大空间建筑物火灾场模拟研究[J].防灾减灾工程学报, 2007, 27(1): 36-42
    [22]文全,蒋勇,谭世立等.计算机模拟技术在火灾调查中的应用[J].武警学院学报, 2008, 24(4): 83-85
    [23]常虹.某高校宿舍楼火灾再现模拟研究[J].消防技术与产品信息, 2008, (8): 8-11
    [24]陈琨,舒慧慧. FDS数值模拟技术在某“商住合用”建筑火灾调查中的应用[J].消防技术与产品信息, 2008, (7): 64-67
    [25]李一涵,邱榕,蒋勇.数值模拟方法在壁面烧损痕迹的应用[J].火灾科学, 2006, 15(2): 102-110
    [26]李松阳,宗若雯,谭家磊等.室内轰燃实验及数值模拟分析[J].安全与环境学报, 2008, 8(5): 141-145
    [27]陈驰,任爱珠,张新.基于虚拟现实的建筑火灾模拟系统[J].自然灾害学报, 2007, 16(1): 64-69
    [28]蒋波,杨培中,柴象海等.地铁火灾应急响应虚拟演习平台设计[J].上海交通大学学报, 2008, 42(2): 214-218
    [29] Hasemi Y, Yokobashi Y, Wakamatsu T , Ptchelintsev A V. Modelling of heating mechanism and thermal response of structural components exposed to localized fires : A new application of diffusion flame modelling to fire safety engineering [A] . Thirteenth meeting of the UJNR panel on fire research and safety [C] , Building and Fire Research Laboratory , National Institute of Standards and Technology , NISTIR 6030. 1996
    [30] W S. Dols, G. Walton. CONTAMW2. 0 User Manual-Multizone Airflow and Contaminant Transport Analysis Software. NISTIR6921. Building and Fire Research Laboratory National Institute of Standards and Technology, 2002
    [31] Fowkes N D. A mechanistic model of the 1973 and 1974 bedroom test fires[R] , in P. A. Croce , ed. , A Study of Room Fire Development : The Second Full2 Scale Bedroom Fire Test of the Home Fire Project [ Z] . VolⅡ, FMRC Tech Rept No. 21011. 4 , 1975. 8~50
    [32]郑昕,袁宏永.受限空间火灾模型研究进展[J].中国工程科学, 2004 6(3): 68~74
    [33] W W Jones. A Review of Compartment Fire Models[M]. NBSIR 83-2684. 1983
    [34] Burns A D , Ingrams D , Jones I P , et . Flow3D : The development and application of rebase [R] . Harwell Report AERE/ R/ 12693 , 1987
    [35]范维澄,万跃鹏.湍流流动模型[A].见:流动及燃烧的模型与计算[M],合肥:中国科学技术大学出版社, 1992. 68~151
    [36]陶文铨.数值传热学[M] .西安交通大学出版社. 1988: 250303
    [37] S. V.帕坦卡著.传热与流体流动的数值计算.张政译.科学出版社, 1984: 130-160
    [38]金忠青. N-S方程的数值解和紊流模型.河海大学出版社, 1989: 17420
    [39]姚建达,范维澄.辐射模型在烟气运动数值模拟中的应用.火灾科学, 1995,4(3): 263
    [40] H. R. Baum, W. E. Mell. A Radioactive Transport Model for Large-eddy Fire Simulation. The National Institute of Standards and Technology or the Building and Fire Research Laboratory, 1998
    [41]张辉,范维澄.火灾问题中湍流模型和数值方法的研究.中国科学技术大学学报, 1988,18(4): 459-465
    [42]张辉,范维澄.单室火灾中浮力修正的雷诺应力模型.中国科学技技术大学学报, 1990,20(1): 67-74
    [43]郭鸿志,张欣欣,刘向军.传输过程数值模型.冶金工业出版社, 1998: 125
    [44] R. G. Rehm, H. R. Baum. The Equations of Motion for Thermally Driven Buoyant Flows. Journal of Research of the NBS. 1978,83: 297-308
    [45] W. Deardorff. Numerical Investigation of Neutral and Unstable Planeta Boundary Layers. Journal of Atmospheric Sciences. 1972,29: 91115
    [46] M. Germano, U. Piomelli, P. Moin, et al. A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids A. 1991,3: 1760-1765
    [47] D. K. Lilly. A Proposed Modification of the Germano Subgrid-Scale Closure Method. Physics of Fluids A. 1992,4: 633-635
    [48] C. Hugget. Estimation of the Rate of Heat Release by Means of Oxygen Consumption Measurements. Fire and Material. 1980,4: 61-65
    [49] W. G. Radcal. A Narrow Band Model for Radiation Calculations in a Combustion Environment. NIST Technical Note (TN 1402). National Institute of Standards and Technology, 1993
    [50]关世义.计算飞行力学与实验设计[J].战术导弹技术, 2001, (4): 45~52
    [51]方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社, 2001.
    [52]盛永莉.正交实验设计及其应用[J].济南大学学报, 1997, 7(3): 69-73
    [53] Puneet S, Amitabh V, RK Sidhu. Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design[J]. Journal of Materials Processing Technology, 168(2005):147-151
    [54] Roberto P, David A, Naresh M. Medium optimization for the production of the secondary metaboliote squalestatin S1 by a Phoma sp combining orthogonal design and response surface methodology[J]. Enzyme and Microbial Technology, 37(2005):704-711
    [55]张向东,岳嫣,田亚光.正交实验设计在基坑工程数值模拟中的应用[J].科学技术与工程, 2007,7(14): 3457-3464
    [56]刘林虎,李淑慧,林忠钦,等.基于压边力设计的高强度钢板成形方法[J]上海交通大学学报, 2005, 39(7): 1085-1088
    [57]李玉强,崔振山,陈军,等.镀锌钢板成形噪声因素实验测量和稳健设计[J]上海交通大学学报, 2007, 41(4): 600-603
    [58] Madrzykowski D, Bryner N P, Kerber S. NIST Station Nightclub Fire Investigation Physical Simulation of the Fire[J]. Fire Protection Engineering, 2006, Summer: 31-46
    [59]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社,1991: 123
    [60]戴德沛.阻尼减振降噪技术[M].西安:西安交通大学出版社,1985: 90-95
    [61]郑辉,陈端石,骆振黄.一种用于阻尼夹层板声损失计算的等效参数法[J].振动工程学报,1994, 3(1): 59-64
    [62]刘全刚.高速磁浮车的车内噪声控制计算研究[D].上海:上海交通大学硕士学位论文,2008: 11-19
    [63]李宏建,于跃勋,朱永全.广州东湖车站暗挖段施工三维动态过程数值模拟分析[J].铁道标准设计,2006(4): 63-64
    [64]毕经东,朱永全,李文江.北京地铁天坛东门站中洞法施工地表沉降数值模拟[J].石家庄铁道学院学报, 2006, 19(4): 70-73
    [65]陈瑞正.物业消防管理[M],天津:天津大学出版社, 2003: 42-44
    [66]中国建筑西南设计院.木结构设计手册[M].北京:中国建筑工业出版社, 1993: 134
    [67]陈文贵,吴建勋,朱吕通.中国消防全书(第一卷)[M].长春:吉林人民出版社112
    [68]徐晓楠,周政懋.防火涂料[M].北京:化学工业出版社, 2004: 72
    [69]林其钊,舒立福.林火概论[M].合肥:中国科学技术大学出版社, 2003: 108-109
    [70]周明.木材防腐和防虫[M].北京:中国林业出版社, 1983: 84
    [71]林松.燃烧规律与图痕[J].消防技术与产品信息, 2004(12): 70~74
    [72]李一涵,邱榕,蒋勇.数值模拟方法在壁面烧损痕迹的应用[J].火灾科学, 2006, 15(2): 102~110