用户名: 密码: 验证码:
太湖蓝藻厌氧发酵产挥发性脂肪酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖蓝藻近年来大规模爆发,造成了严重的环境问题。蓝藻中蛋白质等营养成分丰富,是一类具有较高资源化利用价值的固体废弃物。本论文采用厌氧发酵技术对蓝藻资源化利用进行研究,通过优化蓝藻厌氧发酵产酸条件,提高目标产物挥发性脂肪酸(VFAs)浓度和底物有机质的降解率与转化率,为蓝藻厌氧发酵产酸技术开发提供基础依据。全文研究内容包括:
     (1)预处理技术对蓝藻厌氧发酵产酸的影响。考察热碱预处理技术对蓝藻有机质溶出效果的影响及产酸效果的影响。结果表明,热碱预处理有助于蓝藻中的有机质的溶出,蓝藻预处理液中的总固体(TS)和挥发性固体(VS)含量较未预处理液的略有升高,而SCOD提高了1.96倍。蓝藻预处理液最高产酸量为5.6 g/L左右,乙酸产量为2.9 g/L左右,较未预处理液的分别提高了47.4%、55.9%,其VFAs产率提高了23.0%,乙酸产率提高了34.6%。
     (2) pH值对蓝藻厌氧发酵产酸的影响。考察pH对蓝藻产挥发性脂肪酸总量及其构成比,乙酸、总酸产率,蓝藻有机成分降解率及产气量的情况。结果表明,pH=9时,VFAs最高浓度是6.15 g/L ,是pH为5、7的1~3倍;pH为9时,蓝藻产酸率及底物降解率较其它两个pH的有明显提高,VFAs产率和乙酸产率分别为0.274 gVFAs/gVS和0.144 g乙酸/gVS,VS降解率达到51.91%; pH=9时,蛋白质、碳水化合物、脂类降解率达到最高,分别为53.2%、30%和40.6%;pH=9时,蓝藻厌氧发酵产气量最小,从侧面说明了碱性条件增强了蓝藻的产酸能力。
     (3)底物浓度对蓝藻厌氧发酵产酸的影响。考察不同底物浓度对蓝藻产挥发性脂肪酸总量、乙酸产量、挥发性脂肪酸构成比及酸产率的影响。研究结果表明,挥发性脂肪酸浓度随着底物浓度的增加而增加,在VS=6%时,有机酸产量达到最高值22.7 g/L,乙酸产量也最高为12.5 g/L;底物浓度对蓝藻厌氧发酵产挥发性脂肪酸构成比有影响,高底物浓度条件下更有利于乙酸的积累,随着底物浓度的不断提高,乙酸占总挥发性脂肪酸的百分比由49%(VS=1%)提高到58%(VS=6%)以上;但酸产率在VS=4%时达到最高值,为0.345 gVFAs/gVS,乙酸产率为0.198g乙酸/gVS。
In recent years, blue algae bloom every year in large scale because of the eutrophication of Taihu Lake. The bloomed algae have to be harvested to clear the lake water. However, it is a serious environmental problem to solve the havested algae. Considering the rich nutrition component such as protein in the algae, it is a promising method to use the algae as a useful resource to produce high value products by biotehnology. In the present research, algae were conversed into volatile fatty acids (VFAs) by using anaerobic fermentation technology. A series of process parameter were tested and optimized to improve VFAs production from algae. The main results are as follows:
     (1)Influence of pretreatment on VFAs production by algae from Taihu Lake. The effects of thermal-alkaline pretreatment method on the solubilization of organic matters and VFAs production were investigated. The results showed that thermal-alkaline pretreatment can improve the solubilization of organic matter from algae. After pretreatment the total solids (TS) and volitile solids (VS) content were increased. SCOD was 1.96 times higher than the untreated samples. Meantime, VFAs production by algae can reach up to 5.6 g/L, in which the acetic acid concentration was about 2.9 g/L. The VFAs production of pretreatment samples increased by 47.4% and 55.9% respectively than the untreated samples. The VFAs yield increased by 23.0% and acetic acid yield increased by 34.6%.
     (2)The influence of pH value on VFAs production from algae. The VFAs production, composition, acetic acid yield, VFAs yield, the degradation rate organic matters and biogas generation were valued. The results showed that the VFAs concentration can reach up to of 6.15 g/L when pH was 9, which was 1 and 3 times of the concentration of pH at 5 and 7; Meanwhile, VFAs yield and the degradation rate were also higher than that of lower pH condition. The acetic acid yield and VFAs yield were 0.274 gVFAs/gVS and 0.144 g acetate/gVS, respectively. The VS degradation rate was 51.91% and the degradation rates of proteins, carbohydrate and lipid can be as high as 53.2%, 30% and 40.6%, respectively. The biogas generation volume was the lowest level when pH at 9, suggesting that the alkaline condition can improve the VFAs production.
     (3)Influence of substrate concentration on VFAs prodution. The effects of different substrate concentrations on VFAs production, composition and VFAs yield were investigated. The results showed that the VFAs production increased gradually with the elevated substrates concentration. When VS was 6%, the VFAs concertration were 22.7 g/L and the acetic acid reached 12.5 g/L; Moreover, the substrate concentration influenced the VFAs composition from algae. High substrate concentration is in favor of acetic acid accumulation, with the increase of substrate concentration, the percentage of acetic acid increased from 49% (VS=1%) to 58% (VS=6%); When the VS is 4%, the VFAs yield reached to the highest level of 0.345 gVFAs/gVS and acetic acid yield reached 0.198 g acetic acid /gVS.
引文
1.林泽新.太湖流域水环境变化及缘由分析[J].湖泊科学,2002,12(2):111-116
    2.徐春艳.太湖流域水污染防治法律对策研究[D]:[硕士学位论文].南京:河海大学,2006
    3.戈贤平,陈家长,吴伟.太湖蓝藻的爆发和生物治理[J].中国水产,2008(3):8-11
    4.方爱红,黄银芝,钱瑾.浅谈太湖蓝藻暴发的原因、危害及其预防治理[J].净水技术,2008,27(3):70-72
    5.于虹曼,冷云.浅谈蓝藻水华的危害与防治[J],北京水产,2004(1):29-30
    6. Jochimsen E M, Carmichael W W, An JS, et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil [J]. N Engl J Med, 1998, 3(38): 873-878
    7.余国忠,余国庆,史本林.富营养化水源水中藻类控制的研究进展[J].信阳师范学院学报(自然科学版),2000,13(4):482—485
    8.徐锐.滇池蓝藻的沼气发酵及低密度蓝藻水处理研究[D]:[硕士学位论文].北京:云南师范大学,2004
    9.汪之和,施文正.蓝藻的综合开发利用[J].渔业现代化,2003,2:32~33
    10.杨海麟,李克朗,张玲,等.蓝藻资源无害化利用技术的研究[J].生物技术,2008,18 (6):95-98
    11.翟文川,潘红玺.太湖蓝藻中天然色素的分离提取及测定[J].湖泊科学,1997,9 (3):284 - 285
    12. Glazer A N. Phycobiliproteins - A Family of Valuable, Widely Used Fluorophores[J]. J Appl Phycol, 1994, (6): 105 - 115
    13.蔡心涵,郑树,何立明,等.藻蓝蛋白用于激光治癌的研究[J].中华实验外科杂志,1995,12 (5): 290 - 291
    14.李定梅.螺旋藻—全球人类最理想的食品[M].2版.北京:警官教育出社,1997:1- 152
    15.邵雪玲,佐藤,竹内昌昭.蓝藻Trichodesmium thiebautii细胞外多糖的抗癌活性[J].氨基酸和生物资源,2001,23 (4):14 - 16
    16. Gilli Caiola M, Billi D, Friedmann E I, et al. Eiect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp.(Chroococcales) [J]. European Journal of Phycology, 1996, 31: 97 - 105
    17. Ostensvic O. Antibacterial properties of extracts from selected plank-tonic freshwatercyanobacteria: A comparative study of bacterial bioassays[J]. J of Applied Microbiology, 1998, 84 (6): 1117 - 1119
    18. Rinehart K L, Shaw P D, Shield L S, et al. Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents [J]. Pure Appl Chem, 1981, 53: 795 - 797
    19. Proteau P J, Gerwick W H, Garciapichel F, et al. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria [J]. Exoeruebtua, 1993, 49: 825 - 827
    20. John M G, Jian L C, Patterson ML, et al. Structure of puwaina-phycins A - E [J]. Tetrahedron, 1992, 48(18): 3727-3729
    21.黎尚豪,叶清泉,刘富瑞,等.固氮蓝藻是稻田氮肥的新肥源[J].湖北农业学,1959,(4):106 - 107
    22.董诗旭,董锦艳,宋洪川,等.滇池蓝藻发酵产沼气的研究[J].可再生能源,2006,2 :16-18
    23. Rui1 X, Tianrong G, Even P, et al. Biochemical Methane Potential of Blue -Green Algae in Biogas Fermentation Progress[J]. Journal of Yunnan Normal University, 2007, 27 (5): 35 - 3
    24.翟志军,马欢,李军,等.巢湖蓝藻产沼气的试验研究[J].安徽农业科学,2008,36(12):5084~5085
    25.王景文.比利时蓝藻爆发防治和综合利用[J].全球科技经济瞭望,2007(12):52 - 53
    26.郭磊.市政污泥多级逆流厌氧发酵产酸技术研究[D]:[硕士论文].无锡:江南大学,2008
    27.蒋展鹏.环境工程学[M].北京:高等教育出版社,2001
    28.贺延龄.废水的生物处理[M].北京:中国轻工业出版社,1998
    29. Zhou Y, Yin X. Production status and market analysis of acetic acid[J]. Journal of Chemical Industry&Engineering, 2003, 24(2): 27-30
    30. Liu H, Cheng S A. Logan BE.Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell[J]. Environ Sci. Technol, 2005, 39(2): 658-662
    31. Largus T A, Khursheed K, Muthanna H A, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends Biotechnol, 2004, 22(9): 477-485
    32. Chynoweth DP, Isaacson R. Anaerobic digestion of biomass[J]. Elsevier Applied Science Publishers LTD, 1987
    33. Golueke C G, Oswald W J, Gotaas HB. Anaerobic digestion of algae[J]. Appl. Microbiol, 1957, 5: 47–55
    34. Uziel M. Solar energy fixation and conversion with algal bacterial systems[D]. PhD thesis. University of California, Berkeley, CA, USA, 1978
    35. Sanchez E P, Travieso L. Anaerobic digestion of Chlorella vulgaris for enrgy production[J]. Resour, Conserv. Recycl, 1993, 9: 127-132
    36. Okuda K. Structure and phylogeny of cell coverings [J]. Plant Res, 2002, 115: 283-288
    37. Chen P H, Oswald WJ. Thermo chemical treatment for algal fermentation[J]. Environ. Int, 1998, 24: 889-897
    38. Samson R, LeDuy A. Influence of mechanical and thermo chemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass[J]. Biotechnol, Lett, 1983, 5: 671-676
    39.刘晓玲.城市污泥厌氧发酵产酸条件优化及其机理研究[D]:[博士论文].无锡:江南大学,2008
    40.任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005,51-135
    41.宫曼丽,任南琪,郉德峰.丁酸型发酵生物制氢反应器的运行特性研究[J].环境科学学报,2005,25(2):275-278
    42. Lin C Y. Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion [J]. Water Res, 1992, 26: 177-183
    43. Banerjee A, Elefsiniotis P, Tuhtar D. The effect of addition of potato-processing wastewater on the acidogenesis of primary sludge under varied hydraulic retention time and temperature [J]. J Biotechnol, 1999, 72(3): 203-212
    44.苑宏英,员建,徐娟,等.碱性pH条件下增强剩余污泥厌氧产酸的研究[J].中国给水排水,2008:26~29
    45.肖本益,刘俊新.pH对碱处理污泥厌氧发酵产氢的影响[J].科学通报,2005,50(24):2734-2738
    46.吴满昌,孙可伟.温度波动对城市有机生活垃圾高温厌氧消化工艺影响[J].环境科学,2006,27(4):805-809
    47. Ahring B K, Ibrahim A A, Mladenovska Z. Effect of temperature increase from 55 to 65℃on performance and microbial population dynamics of an anaerobic reactor treating cattle manure[J]. Water Res, 2001, 35(10): 2446-2452
    48. Ginkel S V, Logan B E. Inhibition of biohydrogen production by undissociated acetic and butyric acids[J]. Environ Sci Technol, 2005, 39: 9351-9356
    49.陈艺阳.市政污泥厌氧发酵定向产乙酸的研究[D].硕士学位论文.无锡:江南大学,2007
    50. Babel S, Fukushi K, Sitanrassamee B, et al. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester[J]. Water Research, 2004, 38: 2417-2423
    51. Dinopoulou G, Rudd T, Lester J N. Anaerobic acidogenesis of a complex wastewater: 1. The influence of operational parameters on reactor performance[J]. Biotechnol Bioeng, 1988, 31: 958-968
    52. Fang H H P, Yu H Q. Acidification of lactose in wastewater[J]. J Environ Eng, 2001, 127: 825-831
    53. Eastman J A, Ferguson J F. Solubilization of particulate organic matter during the acid-phase of anaerobic digestion [J]. J Water Pollut. Control. Fed, 1981, 53(3): 352-366
    54. Lilley I D, Wentzel M C. Loewenthal R E, Marais G V R. Acid fermentation of primary sludge at 20 [R]. Res. Rep. W64, Dep. Civ. Eng, Univ of Cape Town, 1990
    55.李建政,张妮,李楠.HRT对发酵产氢厌氧活性污泥系统的影响[J].哈尔滨工业大学学报,2006,38:1840-1843,1846
    56.赵丹,任南琪,王爱杰.pH、ORP调控发酵类型和微生物顶级群落[J].重庆环境科学,2003,25:33-35,38
    57. Bouzas A, Gabaldon C, Marzal P, et al. Fermentation of municipal primary sludge: Effect of SRT and solids concentration on volatile fatty acid production[J]. Environmental Technology, 2002, 23(8): 863-875
    58. Xu L. Production of acetic acid from synthesis gas with mixed acetogenic microorganisms[D]. Ph. D. Dissertation. USA: Texas A&M University, 2002
    59. David B, Pavan P, Battistoni P, et al. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process[J]. Process Biochemistry, 2005, 40: 1453-1460
    60. Song Y C, Kwon S J, Woo J H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge[J]. Water Research, 20044, 38: 1653-1662
    61. Wooshin P, Seung H H, Bruce E L. Removal of headspace CO2 increases biological hydrogen production[J]. Environmental Science Technology, 2005, 39: 4416~4420
    62.刘振玲,堵国成,刘和,等.食品废弃物厌氧消化产乙酸的研究[J].环境污染与防治,2007:49~52
    63.杨利芝,华冲,徐宏勇,等.用驯化的活性污泥强化修复氯酚污染土壤的试验[J].环境工程学报,2007,1(12):141~144
    64.国家环境保护局《水和废水监测分析方法》编委会.《水和废水监测分析方法》(第四版).北京:中国环境科学出版社,2002:102~107
    65. Braford M. A rapid and sensitive nethod for the quantitation of microgram quantities of protein dye binding[J]. Anal Biochem, 1976, 72: 248-254
    66. Dubois M, Gilles K A, Hamilton J K, et a. Colorimetric method for determination of sugars and related substances[J]. Anal Chem, 1956, 28: 350~356
    67. Golueke C G, Oswald W J, Gotaas HB. Anaerobic digestion of algae[J]. Appl. Microbiol. 1957: 5: 47–55
    68. Uziel M. Solar energy fixation and conversion with algal bacterial systems. PhD thesis[D]. University of California, Berkeley, CA, USA, 1978
    69.张波,史红钻,张丽丽,等.pH对厨余废物两相厌氧消化中水解和酸化过程的影响[J].环境科学学报,2005,25(5):665~669
    70.石峰,刘和,聂艳秋,等.产氢产酸/同型产乙酸两相耦合工艺厌氧发酵市政污泥生产乙酸[J].应用与环境生物学报,2008,14(6):814~819
    71. Horiuchi J, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acid reactor by pH control[J]. Bioresource Technol. 2002, 82 (3): 209~213
    72. Forster Carneiro T, Perez M, Romero L I, et al. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste focusing on the inoculum sources[J]. Bioresource Technology, 2007, 98: 3195~3203
    73. Kuo-Shing Leea, Yao Feng Hsub, Yung-Chung Loc, et al. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora[J]. International Journal of Hydrogen Energy, 2008: 1-3
    74.赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2003:23~26
    75. Aquino S F, Stuckey D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Res, 2004, 38: 255~266
    76. Bligh E G, Dyer W J. A rapid method of total lipids extraction and purification[J]. Can J Biochem phvsiol, 1959, 37: 911~917
    77. Grinberg V Y, Burova T V, Haertle T, et al. Interpretation of DSC data on protein denaturation complicated by kinetic and irreversible effects[J]. J Biotechnol, 2000, 79: 269~280
    78.潘云峰,李文哲.物料浓度对畜粪厌氧消化的影响[J].农机化研究,2008,1:193-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700