深海水液压泵的结构设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以海水为工作介质可以使作业机械具有系统结构简单、使用维护方便和环保等优点。因此,海水液压传动技术是当前深海作业技术及装备的研究热点。本文研究了一种轴向柱塞海水液压泵与油浸式直流电机共用轴和轴承的一体化结构型式“电机-泵”。该泵所具有的小型化、便携式和轴承润滑条件好等特点使之特别能满足深海作业机械的需要。
     本文中在分析深海水液压泵工作环境和技术难点的基础上,对所研究的液压泵技术难点提出了解决方案,设计制造了样机,并对样机进行了试验研究。
     通过对三种现有滑靴结构的对比分析,本文提出一种带有倒锥结构的新型滑靴,并利用塑性力学理论建立了新型滑靴的力学模型,考察了其力学特性。分析结果表明新型滑靴不仅结构简单,摩擦磨损小,而且内外滑靴之间有更大的结合力而不至于受外力脱落。通过试验研究,发现新型滑靴性能良好,证明新型滑靴结构和加工工艺合理。
     通过对两种缸孔柱塞副结构的分析,建立了两种缸孔柱塞副结构的力学模型,并利用计算机进行了数值求解,对比分析了其斜盘支反力、缸孔侧压力、接触比压与pv值等的变化趋势。对比分析后发现孔柱塞副采用柱塞缸孔配合长度恒定结构可以减小斜盘支反力、缸孔侧压力、接触比压与pv值,有效改善孔柱塞副的受力状况、减小摩擦磨损。
     利用AMESim软件,本文建立了深海水液压泵的配流模型,同时对配流过程进行了仿真研究。通过对仿真结果的分析,讨论了闭死容积、阀芯质量、弹簧刚度、工作压力对水液压泵配流特性的影响并针对性地提出了减小不利影响的方法。
     样机加工完毕后,对样机进行了试验研究。试验结果表明:该水液压泵的工作压力可以达到13.5MPa,流量为8.3L/min。
Using seawater as the medium of fluid power transmission is the hot-spot in the field of the deep-sea underwater work machinery. The seawater hydraulic technology not only simplify the structure, maintenance and operation of machinery, but also is compatible with ocean environment. In this thesis, a motor-pump prototype which has integral structure of combining the the seawater hydraulic axial piston pump and the DC motor filled with oil is researched . The DC motor and seawater hydraulic pump share the same shaft and bearings. This motor-pump has many advantages such as miniaturization, portability and good lubricating condition of the bearing etc, so that can be used for the uderwater work machinery in deep-sea.
     Basing on the working conditons of Hydraulic Pump applied in Deep Sea and the technological difficulities, the solutions of the key technology of the prototype are presented. Moreover, the prototype has been made and researches about its performances test are carried out.
     By comparing availabe three structures of slipper, a new type of slipper with back taper structure is developed. In order to analyse the mechanical characteristic of the slipper, a mechanical model is built according to the plastic mechanics theory. The results demonstrate that the new slipper not only has simple structure, lower friction coefficient and anti-wear, but also there are enough bonding force to keep the internal and external parts of the new kind of slipper being assembled reliably. The results of test manifests that the structure and make processing of the new kind of slipper are reasonable and it has outstanding performances.
     Two mechanics models are established according to two combination of cylinder bore and piston pair and calculated by computer. The results show the change trend of opposite force of swashplate, lateral pressure of piston, contact stress and pv- value. By comparison, the structure with the constant length of fit shows much better performances than the other one . It can improve mechanics performances and reduce wear effectively.
     Using the software AMESim, a inlet or outlet valve’s model of under seawater hydraulic pump is analysed and its working process is also simulated. According to the result of simulation, the influences of clearance volume, weight of valve, stiffness of spring and working pressure on working performance of Hydraulic Pump applied in Deep Sea are discussed and the methods of decreasing the adverse effects are presented.
     A prototype is successfully made. performance tests about it are carried out. The results show that the working pressure of prototype can reach 13.5MPa and out-flow rate can be 8.3L/min.
引文
[1]刘银水,余祖耀,唐群国等.表面工程技术在水压元件中的应用.中国机械工程,2003(11),14(21)
    [2]邓斌,王金诺,柯坚等.高压纯水轴向柱塞泵的结构分析.机床与液压,2003:153~155
    [3]聂松林,石学园,李晓晖等.水压传动技术及其在农业机械中的应用.农业机械学报,2006(9),37(9)
    [4]唐群国.工程塑料和等离子喷涂工程陶瓷在水润滑下摩擦特性及相关问题研究.武汉:华中科技大学博士后研究工作报告,2003
    [5]杨林建,冯锦春.水压传动的特性及应用分析.现状趋势战略,2004
    [6]刘银水,朱玉泉,李壮云.水压传动技术的特征与新进展.液压与气动,2006(2)
    [7]李壮云,贺晓峰,聂松林等.液压元件与系统.机械工业出版社,2005:5~13,85
    [8]王新华,魏源迁,李剑锋等.水压传动技术发展的现状及其应用前景.机床与液压,2003(6)
    [9]王新华,李剑锋,魏源迁等.绿色产品设计与水压传动技术.机床与液压,2004(3)
    [10]曾曙林,周梓荣.水压传动技术的研究进展及在工程机械行业的应用.湖南工程学院学报,2002(12),12(4)
    [11]刘银水,李壮云.水压传动技术在移动机械中的应用.液压与气动,2004
    [12]王强,姜继海.水压传动元件的发展现状及其应用前景.机床与液压,2004(10)
    [13]许贤良.液压技术回顾和展望.液压气动与密封,2002(6)
    [14]周华,杨华勇.轴向柱塞式纯水液压泵的研究分析.机床与液压,1998
    [15]聂松林,刘银水,余祖耀等.海水液压作业工具系统的研制.海洋工程,2004(8),22(3)
    [16] Currie J A.The Development of Raw Water Hydraulic.Proc.of 1st Bath int.Fluid Power Workshop,Univ.Of Bath,UK .ept.1988: 3~13
    [17] Terava J, Vilenius M. Development of seawater hydraulic power packs .Proc. of 4th Scandinavian Int. Conf.on Fluid Power,Tampere,Finland,1995:978~991
    [18] Brooks C A,Fangan M J,James R D. The Development of Water Hydraulic PumpsUsing Advanced Engineering Cera mics. Proceedings of 4th Scandinavian International Conference of Fluid Power Tampere, Finland,1995
    [19] C. H. Lim, P. S, K.Chua, Y.B. The modern water draulics-the new energy transmission technology in fluid power[J]. Applied Energy, 2003(6):239~246
    [20] F. C:onrad,A. Adelstocp. Tap Water Hydraulic Control Systems for Medium Power Application Areas[C].10th Bath International Fluid Power Workshop, University of Bath,England.ILK, 10~12 September, 1997:117~130
    [21] Finn Conrad, Bjame Hilbrecht, Hardy Jepsen. Design of Low-pressure and High-pressure Tap Water Hydraulic Systems for Various Industrial Applications[C]、SAE、International off-Highway and Powerplant Congress and Exposition, Milwaukee,WI,USA,11~13 September,2000
    [22] C.Scheffels . Developments in water hydraulics . Hydraulics &pneumatics. December ,1996
    [23] Scheffels. Developments In Water hydraulics.Hydraulics &pneumatics. December, 1996.33~34,74
    [24] J .Tcrava,T.Kuikko,M.Vilenius. Development of sea water hydraulic power pack. Proc.4th Scandinavian Int. Conf. on Fluid Power. Tampere,Finland,September. 1995:978~991
    [25] Graham R,Hastings G G . Development of a seawater hydraulic tool systen[J].Hydraulics &pneumatics.1982
    [26]白旭华,张风阁,修宁泽等.潜水电机的结构与设计特点.沈阳工业大学学报,2005(6),27(3)
    [27]徐国华,张军胜,向先波等.直流无刷电机驱动的水下电缆绞车系统.海洋工程,2006(5),24(2)
    [28]凌勇坚.QY潜水电泵结构及装配口工艺.制造技术与工艺,2003
    [29]李威震.无刷直流电机及应用研究.连云港职业技术学院学报,2000(6),13(2)
    [30]姚刚,王止茂,王萍等.永磁无刷直流电机的研制.设计与研究
    [31]张显亮.潜水电机常用密封结构剖析.工艺与测试,2005
    [32]薛枫.浅谈潜水电机结构可靠性的改进.电机技术,2001(1)
    [33]李圣年.井用潜水电动机的基本结构与主要特点.电机技术,2004
    [34] Bonnctt A H.Soukup G C. Anslysis of failures insquirrel-cage induction motors[M].IEEE Trans. On Industry Aplocation, 1998, 24(6):1124~1130
    [35] Aboulnaga A A,Desai P C,Rodriguez F,et al.A novel,low-cost,high-performance single-phase adjustable-speed motor drive using PM Brush-less DC Machine.IIT's Design for 2003 future energy challenge[J].IEEE,2004,3:1595~1603
    [36]盛敬超.液压流体力学.机械工业出版社,1983:45~68
    [37]杨曙东.基于海水润滑的中高压水压泵研究.华中科技大学博士学位论文,2005(11):70,81
    [38]柯坚,刘思宁,许明恒等.水压泵用材料.机床与液压,2001,3
    [39]何存兴.液压元件.机械工业出版社,1981:172~174
    [40]徐绳武.柱塞式液压泵.机械工业出版社,1985,7:119~121
    [41]宋俊,王淑莲,王洁等.液压元件优化.机械工业出版社,1999,9:230~233
    [42]贺晓峰,黄国勤,杨友胜等.球阀阀口流量特性试验研究.机械工程学报,2008(8),40(8)
    [43]俞汉清,李晓沛,赵秉厚等.公差与配合过盈配合计算与选用指南.中国标准出版社,1987,10:42~44
    [44]夏志皋.塑性力学.同济大学出版社,1990:136~142
    [45]李华聪,李吉.机械/液压系统建模仿真软件AMESim.计算机仿真,2006,23(12),294~297
    [46]丘铭军,赵航.AMESim软件及其应用.路面机械与施工技术,2005(8):60~61
    [47]柯尊荣,朱玉泉.新型海(淡)水柱塞泵的研究与开发.武汉:华中科技大学博士学位论文,2006
    [48]黄国勤.中高压容积式海水液压泵的试验研究与改进.武汉:华中科技大学硕士学位论文,2005