电力系统继电保护可视化开发平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统的安全稳定运行如今已经成为影响国民经济快速稳定发展的重要因素之一,而在电力系统中,继电保护装置为确保电网的安全稳定运行发挥着极其重要的作用。如今,电网架构日益复杂且形式不一,对继电保护的个性化需求也日益突出,为此各专家学者针对继电保护装置开展了许多研究工作。
     在保护的开发过程中,经常碰到这样的问题:一方面,由于当前保护都采用物理底层开发模式,当硬件有所改动时需要花费大量的人力物力来进行调整,耗费大量的时间和人力;另一方面,当需要对保护的某一功能模块进行调整以满足电网的个性化需求时,由于各个模块之间耦合非常强,需要牵动整套保护使得工程量变的非常巨大甚至无法完成。
     电力系统继电保护可视化开发平台综合利用组件技术、现代数字式保护技术、数字仿真技术以及虚拟仪器技术,为适应电力系统个性化的继电保护开发提供了技术基础。该平台通过将保护各个功能模块解藕从而使得各个功能模块彼此独立,使得保护的各个功能模块的开发和升级变的简单。这样一方面可以缩短保护的开发周期,节省大量的人力物力;另外一方面可以很方面的满足电力系统继电保护的个性化需求;最后由于本平台的可视化特性,该平台方便可用于研究新型保护算法或原理,也可用于评测已有保护原理对于特定电网的适应性,还可用于电网事故后的保护动作行为分析。与已有的微机保护仿真系统相比,本系统具有如下突出特点:(1)基于虚拟仪器技术;(2)暂态仿真与测试;(3)集成化;(4)组件化;(5)仿真过程可视化和透明化,可以完整观察系统仿真过程以及保护内部动作情况;(6)保护性能评价。
     本文将Labview和ATP集成起来,利用ATP实现故障仿真,Labview实现保护仿真,采用了软件框架技术建立数字式保护的软件模型,在虚拟保护仿真系统中模拟物理保护装置,实现保护动作过程可视化、透明化,方便研究保护的新原理、新算法,高效地分析、诊断保护的不正确动作,评价保护动作行为,从而构成了完整的基于虚拟仪器的保护动态仿真与测试系统。该系统模块化设计,开放性好,集成度高,具有可视化功能,有利于观测保护内部动作情况,分析继电保护装置的动态特性。
     另外,本系统引入保护系统全自动化测试。虚拟仪器可与实际保护装置(即待测保护装置)并行连接,可利用虚拟仪器作为基准,校验实际装置。
The steady operation of power system has already become one of the important factors that affect the fast stable development of national economy. Meanwhile in the power system, the equipment of relay protection is of vital importance to guarantee the secure and steady operation of the power grid. Nowadays, the intricacy and diversity of structure of power grid urges the specialized need for relay protection. Thereby, many a specialists over the world carry out researches on the equipment of relay protection.
     In the protective exploration, there often exist these two common problems: in one hand, it would take piles of human and material resources to realize the change of hardware, for the reason that the present development mode adopts the physical bottom layer; in the other, the coupling amongst the modes is so powerful that it is hard to accomplish or even worse, when it comes to adjust certain functional mode to meet the needs of specific power grid.
     The visualized development platform of relay protection in power system synthetically utilizes the configuration, modern digital protection, digital simulation and virtual instrument technology with an aim to provide the foundation for the specific development of relay protection. The platform , via protection on every functional release coupling , achieves the separate of each mode to make it easier to develop and update each mode in the protection. On the one hand, the development cycle of relay protection is shortened and human and material resources are saved; on the other hand, it’s convenient to satisfy the individual demand of the equipment of relay protection in power system. Lastly, due to the visualization characteristic of this platform, it can be easily applied to explore new algorithm or principle of relay protection, to evaluate the adaptability of current principle for special power grid and also have application in the analysis of relay protection action after the power grid accident. Compared with the current computer emulation system of relay protection, this system has the following merits:
     1. based on virtual instrument technology,
     2. transient simulation and testing,
     3. integrated,
     4. configuration,
     5. the visualization and transparence of the simulation makes it possible to observe the process and inner operation of the protection,
     6. protective evaluation.
     The paper is aimed at integrating Labview and ATP, that is: first ATP implements Fault Simulation, and Labview achieves Protection Simulation; next, the system adopts the technology of software framework to build software model of digital protection; finally, in the Virtual Protection Simulation System, the Physical Protection Device is simulated so as to realize the visualization and transparentization of the Protection course, which convenience the research on new theory and algorithm, the analysis on the incorrectness of the Protection, and the evaluation on Protection action. All of these consist of the Dynamic Protection Simulation and Testing System which are wholly based on virtual instrument. The module design of the system, which is open, visualized and in high integrated level, gives priority to observe the inner action of the Protection, and analyze dynamic features of relay protection instrument.
     Additionally, the system employs the full-scale automatic testing of protection system. The virtual instrument can make parallel joint with the real protection equipment (i.e. the protection equipment to be tested), which could take the virtual instrument as base, and verify the experimental device.
引文
[1] 刘君华. 基于 Labview 的虚拟仪器设计. 电子工业出版社. 2003.1:7~8, 24~32
    [2] 杨奇逊, 黄少锋. 微型机继电保护基础. 中国电力出版社. 2005,1:80~123
    [3] 张保会, 尹项根. 电力系统继电保护. 中国电力出版社. 2005.5:263~273
    [4] 刘一江. 微机距离保护的新方法. 电工技术学报, 1999,12:65~68.
    [5] 蒋陆萍. 微机距离保护的阻抗算法和特性分析. 湖南电力, 2001,4(21):18~19.
    [6] 王守畔, 李志成. 微计算机电网距离保护的研究. 微处理机, 1997,2(1):38~40.
    [7] 冯刚, 龚文强. 微机型距离保护与常规保护的技术特点比较. 广东电力,2002,8(15):51~53.
    [8] 张哲, 陈德树. 新型微机距离保护的研究. 中国电力, 1995,3:16~19.
    [9] 盛义发,唐耀庚,苏泽光,赵宇红. 基于 MatLAB 的电力系统故障的仿真分析. 南华大学学报, 2003,17(4):45~51
    [10] 韩笑,徐曦,陈卓平. 基于 MatLAB 与 VB 数据交换的继电保护仿真. 电力自动化设备, 2006,26(5):92~95.
    [11] 邓焱,王磊. Labview7.1 测试技术与仪器应用. 机械工业出版社. 2004,8:35~42
    [12] 黄海悦 ,缪 欣 ,权宪军 ,徐广腾 ,张青山 ,张马龙 ,杨泽平. 基于元件化和可编程逻辑构建的继电保护平台,2006.34(14): 11~14
    [13] 朱忠军. 基于虚拟仪器的电力机车牵引系统电力参数测试分析仪的研究. 大连交通大学硕士学位论文. 2006,6:15~17
    [14] 周建国. 虚拟仪器技术在交流变频异步电力测功机中的应用研究. 重庆大学硕士学位论文. 2005,4:4~6
    [15] 王星海. 基于虚拟仪器的电力电缆故障测距系统的研究. 郑州大学硕士学位论文. 2005,5:9~14
    [16] 方木云, 戴小平. 基于 UML 的集成化 CASE 平台的研究和实现. 计算机技术与发展, 2006,16(2):26~31.
    [17] 高峰. 微机距离保护动态仿真系统的研究. 山东大学硕士学位论文, 2005,5:4~8.
    [18] 方向东. 基于虚拟仪器的电力参数自动测试系统. 湖南大学同等学历硕士论文. 2004,9:33~36
    [19] 刘青,王增平,徐 岩,焦彦军,曲艳华. 光学电流互感器对继电保护系统的影响研究. 电网技术,2005.29(1): 11~14
    [20] 黄莉. 电流互感器饱和对距离保护影响的研究. 浙江大学硕士学位论文, 2004,3:28~31.
    [21] 梅德冬. 电容式电压互感器暂态过程对保护影响及算法研究. 浙江大学硕士学位论文, 2003,2:23~26.
    [22] 胡希 , 同姜志海 , 姚光森 . 短路暂态过程对距离保护的影响 . 山东工程学院学报, 1994,12(8):42~44.
    [23] 施静辉, 索南加乐, 许庆强, 刘家军, 葛耀中. 电容式电压互感器暂态特性对距离保护影响的研究. 西安交通大学学报, 2003,4(37):416~418.
    [24] 陈波. 新型光电式电流互感器的研究. 华北电力大学硕士学位论文. 2002,12:39~52
    [25] 李岩松. 高精度自适应光学电流互感器及其稳定性研究. 华北电力大学工学博士学位论文.2004,4:10~19.
    [26] 刘晔, 王采堂, 苏彦民, 张赟, 邹建龙. 电力系统适用光学电流互感器的研究新进展. 电力系统自动化, 2000,9,10:60~62.
    [27] 滕林,刘万顺,李贵存,贾清泉,李岩松. 光学电流传感器及其在继电保护中的应用.电网技术. 2002.26(1):31~33.
    [28] 詹少伟,蔡泽祥,刘德志,刘为雄,刘强. 数字式距离保护仿真软件的开发. 电网技术, 2006,30(3):89~90.
    [29] 杨晓军, 沈勇环, 郭征, 贺家李. 开放式的继电保护动态特性仿真系统. 电力系统及其自动化学报, 2003,15(6):2~5.
    [30] 李志兴, 蔡泽祥, 许志华. 继电保护装置动作逻辑的数字仿真系统. 电力系统自动化, 2006, 30(14):97~101.
    [31] 权锐. 计算机距离保护测量误差分析. 四川电力技术, 2001,4:42~43.
    [32] 李鹏博, 马杰. RAZFE 距离保护在背后故障切除时误动原因的分析. 山东电为技术, 1995,3:28~30.
    [33] 周正. 岗云线故障 LZ96 距离保护误跳三相的原因和改进措施. 华中电力, 1994,10(7):51~54.
    [34] 王忠明, 刘锋. 一起距离保护误动原因分析及防范措施. 冶金动力, 2005,1:13~15.
    [35] 王晋红, 许建功. LFP 系列接地距离保护反向故障误动分析. 山西电力, 2003,4(2):29~31.
    [36] 董永德. 换流站 LZ-96 距离保护误动原因分析研究. 湖北电力, 2001,3(25):40~42.
    [37] 周军. 关于距离保护装置失去 P·T 三相电压误动的改进意见. 继电器, 1995,2:63~65.
    [38] 吴在军, 胡敏强. 变电站通信网络和系统协议 IEC61850 标准分析. 电力自动化设备, 2002,11(22):70~72.
    [39] 童晓阳 , 李映川 , 王晓茹 . 基于 IEC61850(的变电站新型 IED 的研究 . 电气应用 , 2005,24:13~16.
    [40] CanAm EMTP User Group, Alternative Transient Program (ATP) Rule Book. Portland, 1992
    [41] Power System Relaying Committee. (2004) EMTP reference models for transmission line relay testing. [Online]. Available: http://www.pes-psrc.org/
    [42] M. Kezunovic. Design optimization and performance evaluation of the relaying algorithms, relays and protective systems using advanced testing tools. IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 4, October 2000.
    [43] E. A. Udren, J. A. Upp, G. L. Michel, K. K. Mustaphi, etc. Proposed statistical performance measures for microprocessor-based transmission-line protective relays. IEEE Transactions on Power Delivery, Vol. 12, No. 1, January 1997
    [44] Communication networks and systems in substation-Part 7-2:Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI),IEC Std. 61850.
    [45] M. Kezunovic and T. Popovic, “Assessing application features of protective relays and systems through automated testing using fault transients,”in Proceedings of the IEEE Power Engineering Society Transmissionand Distribution Conference, vol. 3, Yokohama, Japan, Oct. 2002, pp1742–1767.
    [46] M. Kezunovic, T. Popovic, S. Donald, and D. Hyder, “Transient Testing of protection relays:Results, methodology and tools,” in International Conference on Power Systems Transients (IPST), New Orleans, USA, 2003.
    [47] A. Apostolov, D. Tholomier, and S. Richards, “Simplifying the configuration of multifunctional protection relays,” in 2005 58th Annual Conference for Protective Relay Engineers, vol. 1, College Station, TX, USA, Apr. 2005, pp. 281–286.
    [48] Communication networks and systems in substation-Part 9-2 Specific communication service mapping(SCSM)- Sampled analogue values over ISO 8802-3, IEC Std. 61850.
    [49] C. Larman, Applying UML and Patterns: An Introduction toObject-Oriented Analysis and Design and Iterative Development, 3rd Edition. Prentice Hall, 2004.
    [50] Bogdan Naodovic. Influence of instrument transformers on power system protection. May 2005:80~90.
    [51] M. Kezunovic, Z. Galijasevic, "PC Based Dynamic Relay TEST Bench State of the Art", Proceedings of the International Conference on ModernTrends in the Protection Schemes of Electric Power Apparatus and Systems, Delhi, India, October 1998.