吸附法提纯含烯五碳烷烃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烯烃/烷烃的分离一直是石油化工行业中最重要和最耗能的过程之一,其中以分离乙烯/乙烷最具代表性。工业上,一直以来使用低温精馏方法分离乙烯/乙烷。尽管低温精馏已工业应用60多年,但其能耗巨大,研究人员一直致力于寻求一种高效、节能、低成本的方法以取代低温精馏。因此需要开展新型的烯烃/烷烃分离技术的研究,其中基于π络合原理的化学吸附分离具有良好的应用前景,受到国内外广泛关注。
     本文在综述了络合吸附分离研究进展及工业应用现状的基础上,探讨了络合吸附机理,制备了高选择性、高分离能力的3-甲基丁烯络合分子筛吸附剂,并研究了络合分离的吸附平衡及固定床动态吸附,为低能耗的烯烃/烷烃分离过程的工业化奠定了基础。本论文采用水溶液离子交换法制备了分子筛吸附剂,并在固定床中考察了不同分子筛吸附剂脱除异戊烷中的3-甲基丁烯的效果及各种操作条件对床层净化效果的影响,主要内容如下:
     采用水溶液离子交换法制备AgA,AgY,AgMOR分子筛吸附剂,通过XRD、TG、水静态饱和吸附和固定床吸附等测试手段对制备的分子筛吸附剂进行了表征与测试。研究发现,离子交换后,AgA分子筛结晶度明显降低,不适合作为吸附剂。AgY,AgMOR分子筛仍保持原有的骨架结构,AgMOR分子筛吸附剂对3-甲基丁烯的吸附能力较弱。在20℃,1 atm,原料气流速为40 mL/min时,AgMOR分子筛吸附剂的吸附量为0.84mg/g。而AgY分子筛吸附剂对3-甲基丁烯的吸附能力较强,在20℃,1 atm,原料气流速为40 mL/min时,AgY分子筛吸附剂的吸附量为115 mg/g,异戊烷中的3-甲基丁烯含量由600 ppm降至30 ppm。所以选用AgY分子筛作为吸附3-甲基丁烯的吸附剂。
     在固定床中考察了吸附温度、床层高度、原料气流量等条件对吸附量、未利用床层高度(LUB)和床层利用率(Q)的影响。实验结果表明,随着温度的升高,AgY分子筛吸附剂对3-甲基丁烯吸附量减少,从饱和吸附量和节省能源的综合角度考虑,采用在20℃进行吸附脱除3-甲基丁烯;吸附量与床层高度无关;增加原料气流速不利于3-甲基丁烯和异戊烷的分离。LUB与流速有关,与床层高度无关,但只有当装填高度L超过LUB时,才能起到净化效果。Q随着原料气流速和床层高度的增加而增大。循环实验表明AgY分子筛吸附剂可脱附再生18次。
Olefin/paraffin separations represent a class of the most important as well as most expensive separations in the chemical and petrochemical industry, especially for ethylene/ethane separation. Cryogenic distillation has been used for many years for these separations from olefin plants; even so it remains the most energy-intensive process because of the close relative volatilities of the components. The large energy and capital investment requirement provides the incentive for ongoing of olefin/paraffin separation technology research. So a number of alternatives have been investigated. The most promising one appears to be separation viaπcomplexation.
     In this paper, current situation of adsorption separation via complexation in industry application and complexation adsorbent research were summarized. At the same time, adsorption mechanism and preparation of new adsorbents with high adsorption selectivety of 3-methyl-1-butene were studied respectively, so did both adsorption equilibrium of the prepared sorbent and behavior of adsorption on fixed bed. All of these studies established a solid foundation of application in industry scale that the new process of olefin and paraffin's separation had lower economizes on energy. In this paper, the zeolites have been prepared for adsorption by cation exchange method in solution. The removal effects of 3-methyl-1-butene from isopentane in a fixed-bed microreactor by deficient zeolite adsorbents were investigated. The purifying effects of technology parameters during the adsorption process have been studied extensively. The main contents are as follows:
     AgA, AgY and AgMOR zeolite adsorbents have been prepared by cation exchange method in solution. A series of characterization methods, such as XRD, TG and water adsorption capacity, have been employed to evaluate the as-prepared adsorbents. After cation exchange, the crystallinity of AgA zeolite decreases, and it could not be promised adsorbents.
     By using fixed-bed, the adsorption properties of AgMOR and AgY zeolites to 3-methyl-1-butene have been investigated.
     AgMOR zeolite has a low adsorption capacity to the adsorbate. Under the conditions of 20℃, 1 atm, and material gas flow rate 40 mL/min, AgMOR zeolite could adsorb 0.84 mg 3-methyl-1-butene per gram. However, AgY zeolite could be a good adsorbent for 3-methyl-1-butene in isopentane. The adsorbed quantity is 115 mg/g under the condition of 20℃, 1 atm and material gas flow rate 40 mL/min. After adsorption, the mass percentage of 3-methyl-1-butene in isopentane drops from 600 ppm to 30 ppm.
     In the fixed-bed experiments, The effects of the adsorption temperature, bed height and gas flow rate on the adsorption breakthrough curve, adsorption capacity, LUB (equivalent length of unused bed) and Q (utilization rate of bed) were also discussed. It is shown that as the temperature rising, the adsorption quantity of 3-methyl-1-butene lowers down. We set 20℃as the appropriate temperature for removing 3-methyl-1-butene from pentane. The adsorption capacity is unrelated to the bed height, and the raising of the material gas flow rate is not propitious to the separation of 3-methyl-1-butene/pentane. The length of unused bed (LUB) was concerned to the gas flow rate but not to the bed height. The zeolite adsorbents can produce purified gas when the bed height was larger than LUB. The AgY adsorbents can be regenerated and reused for eighteen times.
引文
[1]Keller G E,Verma S K,Williamson K D,et al.Olefin recovery and purification via silver complexation,Separation and Purification Technoligy[M].New York:Marcel Dekker,1992.
    [2]冯孝庭.吸附分离技术[M].北京:化学工业出版社.2000.
    [3]Beck J S,Vartuli J C,Roth W J,et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J Am Chem Soc,1992,114:10834-10843.
    [4]Kresge C T,Lenonwicz M E,Roth W J,et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism 1J].Nature,1992,359(6397):710-712.
    [5]Sebastian J,Jasra R V.Sorption of nitrogen,oxygen,and argon in silver-exchanged zeolites[J].Ind Eng Chem Res,2005,44(21):8014-8024.
    [6]Zhou J X,Zhang Y C,Guo X W,et al.Removal of C_2H_4 from a CO_2 stream by using AgNO_3-modified Y-zeolites[J].Ind Eng Chem Res,2006,45(18):6236-6242.
    [7]Wu Z B,Han S S,Cho S H,et al.Modification of resin-type adsorbents for ethane/ethylene separation[J].Ind Eng Chem Res,1997,36(7):2749-2756.
    [8]Grande C A,Araujo J D P,Cavenati S,et al.New pi-complexation adsorbents for propane-propylene separation[J].Langmuir,2004,20(13):5291-5297.
    [9]王宗说等.变压吸附法提纯CO的研究[J].天然气化工,1991,16(2):8-13.
    [10]戴服管,游家骊.工业废气中一氧化碳的分离及利用[J].石油化工,1989,18(2):128-134.
    [11]Long R B,Highlands A,Longwell J P.Separation and recovery of comlexible Ligands by liguid exchange[P].US3592865.1971-07-13.
    [12]Long R B,Highlands A,Caruso F A,Bimetallic salts and derivatives there of their preparation and use in the complexing of ligands[P].US3651159.1972-03-21.
    [13]Benkmann C.CO removal by pressure swing adsorption for iron direct reduction plants [J].Linde reports on science and technology,1988,44(8).
    [14]Rabo J A,Francis J N.Adsorption of carbon monxide using silver zeolites[P].US4019880.1977-04-26
    [15]Huang Y Y.Selective adsortion of carbon monoxide and complex formation of cuprous-ammines in Cu(I)Y zeolites[J].J Catal,1973,30:180-194.
    [16]Tajima K,Osada Y,Selective adsorbent for CO and method of manfacturing the same[P].US4783433.1988-11-08.
    [17]汪贤朱,周建良.CO在负载CuCl的CuY型沸石分子筛吸附剂上的吸附分离.石油化工,1994,23(8):502-507.
    [18]Xie Y C,Bu N Y,Lu J.Adsorbents for use in the separation of carbon monoxide and unsaturated hydrocarbons from mixed gases[P].US4917711.1990-04-17
    [19]谢有畅,刘军,高效吸附剂及其制备方法和应用[P].CN86102838.1987.
    [20]Yang R T,Hernandez-Maldonado A J,Yang F H.Desulfurization of transportation fuels with zeolites under ambient conditions[J].Science,2003,301(5629):79-81.
    [21]Yang R T,Padin J,Rege S U.Selective adsorption of alkenes using supported metal compounds[P].US6423881.2002.
    [22]Padin J,Munson C L,Yang R T.Method for selective adsorption of dienes[P].US6215037.2001
    [23]郝润蓉,方锡义.无机化学丛书(第三卷)[M].北京:科学出版社.1998.
    [24]Chen N,Yang R T.Abinitio molecular orbital study of adsorption of oxygen,nitrogen and ethylene on silver-zeolite and silver halides[J].Ind Eng Chem Res,1996,35(11):4020-4027.
    [25]叶振华.吸附分离过程基础[M].北京:中国石化出版社.1988.
    [26]北川浩,铃木谦一郎.吸附基础与设计[M].北京:化学工业出版社.1983.
    [27]Yoke J,Takeuchi M,Tsuji J.Adsorbent for separation-recovery of CO preparing method there and process for separation-recovery of high purity CO using the adsorbent[P].US4713090.1987
    [28]刘晓勒,马正飞,姚虎卿.变压吸附法回收高炉气中CO的研究[J].化学工程,2003,31(6):54-57.
    [29]横江甚大朗,武内正己,迁利明.分离回收一氧化碳的吸附剂及其制法以及用它分离回收高纯一氧化碳的方法[P].CN86106219.1987.
    [30]Xie Y C,Zhang J P,Qiu J G,et al.Zeolites modified by CuCl for separating CO from gas mixtures containing CO_2[J].Adsorption,1996,3(1):27-32.
    [31]Jain S,Moharir A S,Li P,et al.Heuristic design of pressure swing adsorption:a preliminary study[J].Sep Purif Technol,2003,33(1):25-43.
    [32]Safarik D J,Eldridge R B.Olefin/paraffin separations by reactive absorption:A review [J].Ind Eng Chem Res,1998,37(7):2571-2581.
    [33]Eldridge R B.Olefin/paraffin separation technology:A review[J].Ind Eng Chem Res,1993,32:2208-2212.
    [34]Keller G E,Marinovsky A E,Verma S K.Olefin recovery and purification via silver complexation in separation and purification technology[M].NY:Marcel Dekker,1992.
    [35]王振维.乙烯分离技术分析[J].乙烯工业,2004,16(3):40-43.
    [36]王振维.王子宗,低能耗乙烯分离技术[J].石油化工,2002,31(6):464-467.
    [37]Yang R T,Kikkinides E S.New sorbents for olefin/paraffin separations by adsorption via pi-complexation[J].AIChE J,1995,41(3):509-517.
    [38] Cheng L S, Yang R T. Monolayer cuprous chloride dispersed on pillared clays for olefin paraffin separations by pi-complexation [J]. Adsorption, 1995, 1(l):61—75.
    [39] Rege S U, Padin J, Yang R T. Olef in/paraffin separations by adsorption: pi-complexation vs. kinetic separation [J]. Aiche Journal, 1998, 44(4):799-809.
    [40] Padin J, Yang R T. New sorbents for olefin/paraffin separations by adsorption via pi-complexation: synthesis and effects of substrates [J]. Chem Eng Sci, 2000,55(14):2607-2616.
    [41] Choudary N V, Kumar P, Bhat S G, et al. Adsorption of light hydrocarbon gases on alkene-selective adsorbent [J]. Ind Eng Chem Res, 2002, 41 (11):2728-2734.
    [42] Cho S H, Han S S, Kim J N, Adsorbents method for the preparation and method for the separation of unsaturated hydrocarbons for gas mixtures [P]. US6315816. 2001.
    [43] Goswami A N, Rawat B S. Studies on the permeation of aromatic hydrocarbons through liquid surfactant membranes [J]. J Membr Sci, 1985, 24(2):145-168.
    [44] Hao J, Tanaka K, Kita H. Prevaporation properties of sulfonyl-containing polymide membranes to aromatic/aliphatic hydrocarbon mixtures [J]. J Membr Sci, 1997,132(1):97-108.
    [45] Atwood J L. New inclusion methods for separations problems [J]. Sep Sci Technol, 1984,19(11):751-759.
    [46] Huang H Y, Yang R T, Chen N. Anion effects on the adsorption of acetylene by nickel halides [J]. Langmuir, 1999, 15(22):7647-7652.
    [47] Takahashi A, Yang F H, Yang R T. Aromatics/aliphatics separation by adsorption: New sorbents for selective aromatics adsorption by pi-complexation [J]. Ind Eng Chem Res,2000, 39(10):3856-3867.
    [48] Avidan A, Klein B, Ragsdale R. Improved planning can optimize solutions to produce clean fuels [J]. Hydrocarb Proc, 2001, 80(2):47-53.
    
    [49] Yang R T. Gas separation by adsorption processes [M]. Bonston: Butterworth, 1987.
    
    [50] Takahashi A, Yang R T, Munson C L, et al. Influence of Ag content and H_2S exposure on 1, 3-butadiene/1-butene adsorption by Ag ion-exchanged Y-zeolites (Ag-Y) [J]. Ind Eng Chem Res, 2001, 40(18):3979-3988.
    [51] Takahashi A, Yang R T, Munson C L, et al. Cu(I)-Y-zeolite as a superior adsorbent for diene/olefin separation [J]. Langmuir, 2001, 17(26):8405-8413.
    [52] Padin J, Yang R T, Munson C L. New sorbents for olef in/paraffin separations and olefin purification for C-4 hydrocarbons [J]. Ind Eng Chem Res, 1999, 38(10):3614-3621.
    [53] Jayaraman A, Yang R T, Munson C L, et al. Deactivation of pi-complexation adsorbents by hydrogen and rejuvenation by oxidation [J]. Ind Eng Chem Res, 2001,40(20):4370-4376.
    [54] Matz M J, Knaebel K S. Criteria for selection of an adsorbent for a temperature swing process applied to purification of an aliphatic solvent contaminated with aromatic solutes [J]. Separ Sci Tech, 1990, 25(9-10):961-984.
    [55] Matz M J, Knaebel K S. Recycled thermal swing adsorption applied to separation of binary and ternary mixtures [J]. Ind Eng Chem Res, 1991, 30(5):1046-1054.
    [56] Takahashi A, Yang R T. New adsorbents for purification: Selective removal of aromatics [J]. AIChE J, 2002, 48(7):1457-1468.
    [57] Whitehurst D D, Isoda T, Mochida I. Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds [J]. Adv Catal, 1998,42:345-471.
    [58] Yang R T, Takahashi A, Yang F H. New sorbents for desulfurization of liquid fuels by,pi-complexation [J]. Ind Eng Chem Res, 2001, 40(26):6236-6239.
    [59] Takahashi A, Yang F H, Yang R T. New sorbents for desulfurization by pi-complexation:thiophene/benzene adsorption [J]. Ind Eng Chem Res, 2002, 41(10):2487-2496.
    [60] Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review [J]. Fuel, 2003, 82(6):607-631.
    [61] Ma X L, Sun L, Song C S. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications [J]. Catal Tod, 2002, 77(1-2):107-116.
    [62] Hernandez-Maldonado A J, Yang R T, Cannella W. Desulfurization of commercial jet fuels by adsorption via pi-complexation with vapor phase ion exchanged Cu(I)-Y zeolites [J].Ind Eng Chem Res, 2004, 43(19):6142-6149.
    [63] Ma X L, Sprague M, Song C S. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications [J]. Ind Eng Chem Res, 2005,44(15):5768-5775.
    [64] Hernandez-Maldonado A J, Yang F H, Qi G, et al. Desulfurization of transportation fuels by pi-complexation sorbents: Cu(I)-, Ni(II)—, and Zn(II)-zeolites [J]. Appl Catal B:Environ, 2005, 56(1-2):111-126.
    [65] Hernandez-Maldonado A J, Yang R T. Desulfurization of liquid fuels by adsorption via pi complexation with Cu(I)-Y and Ag-Y zeolites [J]. Ind Eng Chem Res, 2003,42(1): 123-129.
    [66] Terry PA, Noble R D, Swanson D, et al. Electrochemically modulated complexation process for ethylene/ethane separation [J]. AIChE J, 1997, 43(7):1709-1716.
    [67] Teramoto M, Matsuyama H, Yamashiro T. Separation of ethylene from ethane by supported liquid menbranes containing silver nitrate as a carrier [J]. J Chem Eng Jpn, 1987,19(5):419-424.
    [68]Teramoto M,Matsumiya N,Yamashiro T.Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier[J].J Membr Sci,1989,45(1):115-136.
    [69]徐如人,庞文琴,于吉红.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [70]陈连璋.沸石分子筛催化[M].大连:人连理工大学出版社,1990.
    [71]王桂茹,王安杰,刘靖.催化剂与催化作用[M],大连:大连理工大学出版社,2000.
    [72]高滋,何呜远,戴逸云.沸石催化与分离技术[M],北京:中国石化出版社,1999.
    [73]Naccache C M,Ben T Y.Oxidizing and acidic properties of copper-exchange Y zeolite [J].J Catal,1971,22:171-181.
    [74]Huang Y Y.Ethylene complexes in copper and silver Y zeolites[J].J Catal,1980,61(1):461-476.
    [75]岑沛霖,柴慈恩,骆有寿.络合吸附分离混合气体中的一氧化碳[J].石油化工,1990,19(7):443-448.
    [76]谢有畅.催化裂化干气吸附分离乙烯工艺.CN1073422,1993.
    [77]Xie Y C,Bu N Y,Liu J,et al.Adsorbents for use in the separation of carbon monoxide and unsaturated hydrocarbons from mixed gases,US4917711,1990.
    [78]梅华.胡成刚.刘晓勤.乙烯-乙烷分离吸附剂的研究进展[J].南京化工大学学报,2000,22(2):74-77.
    [79]Padin J,Munson C L,Yang R T.Method for selective adsorption of dienes,US6215037,2001.
    [80]Bias F J,Vega L F,Gubbins K E.Modeling new adsorbents for ethylene/ethane separations by adsorption via pi-complexation[J].Fluid Phase Equilibria,1998,151:117-124.
    [81]Deng S G,Lin Y S.Sol-Gel Preparation and Properties of Alumina Adsorbents for Gas Separation[J].AIChE Journal,1995,41(3):559-570.
    [82]Hirai H,Kurima K,Komiyama M.Selected solid ethylene adsorbent composed of Copper chloride and polystyrene resin having amino group[J].Polym Mater Sci Eng,1986,55:464-468.
    [83]Hirai H,Hara S,Komiyama M.Polystyrene-supproted alumina silver chloride as selective ethylene adsorbent.An-gew Makromol them,1985,130(1):207-212.
    [84]刘晓勤,光辉,梅华.稀土复合吸附剂变压吸附混合气中乙烯的研究[J].高校化学工程学报,2003,17(6):622-626.
    [85]刘晓勤,戴岳,姚虎卿.变压吸附法回收环氧乙烷生产排放气中的乙烯[J].化学工程,2006,34(2):67-70.
    [86]Mei H,Hu C G,Liu X Q,et al.Study of activated carbon supported CuCl for ethylene/ethane separation by adsorption:Effects of oxidative treatment[J].New Carbon Materials,2002,17(4):33-37.
    [87]朱英刚,赵新生,白跃华.从催化裂化干气中分离乙烯的吸附剂研究[J].石油化工,2004,33(11):1074-4079.
    [88]陈乐,刘晓勤,梅华.乙烯乙烷在不同吸附剂上的吸附平衡研究[J].化工进展,2005,27(4):777-779.
    [89]赵新强,朱英刚,白跃华.采用CuCl_2La(NO_3)/AC吸附剂从乙烯乙烷混合气中分离乙烯的研究[J].石油学报,2005,21(3):96-102.
    [90]姚稳,刘晓勤,戴岳.工业尾气中的乙烯在络合型吸附剂上的变压吸附性能[J].石油化工,2005,34(7):660-663.
    [91]李德伏,曾海,王金渠.活性炭的改性及对乙烯的吸附性[J].石油化工,2001,30(9):677-680.
    [92]张雄福,王金渠.碳分子筛吸附脱除乙醛装置尾气乙烯中少量氧气和氮气的研究[J].大连理工大学学报,1998,38(2):166-170.
    [93]贡雪东,肖鹤呜,高岭石.吸附乙烯和苯的Delft分子力学研究[J].分子科学学报,1998,14(3):149-154.
    [94]黄仲涛,工业催化剂手册[M],北京:化学工业出版社,2004.
    [95]Hustson N C,Yang R T.Structural effects on adsorption of atmospheric gases in mixed Li,AgX zeolite.AlChE J.2000,46(11):2305-2317.
    [96]Gonzalo Vazquez.Uptake of Phenol from Aqueous Solutions by Adsorption in a Pinus Pinaster Bark Packed Bed.J Hazard Mater,2006,133(1-3):61-67.