长碳链不饱和有机化合物的绿色环氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧化合物是一大类化学品生产的重要原料,所以环氧化反应的研究有着十分重要的意义。但是传统生产过程会产生大量的羧酸废水,引起严重的环境污染。上世纪90年代中逐步发展起来的绿色化学从原理和方法上给传统化工生产带来了显著的变化,是目前化工特别是精细化工研究的热点。本论文以绿色化学的基本原理和思路为指导,对植物油脂环氧化过程进行研究。
     论文首先对铼催化体系催化环氧化植物油脂的过程进行了研究,针对传统方法中需要用到羧酸的不足,采用甲基三氧化铼为催化剂替代传统方法需要用到羧酸,减小了对环境造成的污染并且环氧化选择性和转化率都在99%以上。此催化体系最大的特色是助剂对环氧化效果的影响,它在反应体系中主要起调节Lewis酸中心pH的作用。通过紫外-可见分光光度法(UV-Vis)对催化剂的研究,发现催化剂在催化环氧化过程中形成催化活性很高的催化中间体,然后催化中间体提供氧给双键,形成环氧键。
     论文第三部分考察了钨、锰催化体系的催化环氧化效果。首先合成出两种含钨催化剂,利用红外光谱、核磁共振手段对合成的含钨催化剂结构进行了表征。结果表明催化剂结构中有过氧钨酸结构存在,并且推测其为进行环氧化的有效结构。然后研究了单因素变化对钨催化体系催化环氧化植物油脂过程的影响,其中最关键的是pH的影响,环氧化过程的最重要的催化中间体在一定pH范围内浓度最大,将有助于环氧化效果的提高。双十八烷基过氧磷钨酸盐的催化环氧化效果是最佳,反应的选择性和转化率可以90%以上。提出了铼、钨等副族过渡金属化合物催化环氧化的前线轨道机理:反应的本质是过氧化官能团中的RUMO轨道σ*(O-O)与长碳链的不饱和有机化合物中的HOMO轨道π(C-C)的重叠。最后对锰催化体系催化油脂进行了研究,发现其环氧化的转化率较低:不到50%,所以此催化体系不适用于长碳链不饱和化合物的催化环氧化反应。
     论文的第四部分通过建立动力学的研究模型,研究了传统甲酸催化方法和铼、钨催化体系催化方法的动力学和热力学,反应的活化能的排序如下:过氧磷钨酸盐(51.15±0.28 kJ/mol) >甲酸(44.85±0.18 kJ/mol) >甲基三氧化铼(31.17±0.14 kJ/mol);棉籽油<大豆油<葵花油,脂肪酸甲酯<大豆油。
     与传统的甲酸法相比,新型催化方法具有以下优点:不使用羧酸,提高操作的安全性,不会产生酸性废水,很大程度上降低了对环境的污染;反应条件温和,反应速率快,催化效率高;反应副产物仅为水,环氧化反应选择性和转化率较高。同时为其它长链不饱和碳碳有机化合物环氧化反应提供了一种绿色环保、有效的合成方法。
Epoxidation plays a significant role since epoxides are useful intermediates for the production of a range of chemicals. Traditionally, epoxidation processes have hazards associated with handling the peracids and serious pollution on an industrial scale. Since 90 years of the last century, significant changes have been brought to principles and methods of the traditional chemical industry by green chemistry. In this paper, epoxidation process of vegetable oils was researched on the basis of principles and ideas of green chemistry.
     Firstly, epoxidation process of vegetable oils catalyzed by methyltrioxorhenium was studied. Using methyltrioxorhenium as the catalyst instead of carboxylic acid can overcome shortcomings of the traditional method. And it could reduce the pollution on the environment. Besides, selectivity and conversion of the epoxidation was above 99%. The most prominent feature of this catalytic system is additive effect, which regulates the pH of Lewis acid. It was found that the catalytic intermediates with a high catalytic activity were formed in the epoxidation process through studies on the UV-Vis spectrum of the catalytic system. Then catalytic intermediates provide oxygen to the double bond to form epoxy bond.
     Chapter 3 shows the catalytic epoxidation results of tungsten, manganese metal-catalytic system. Two kinds of tungsten metal catalysts were synthesized and characterized using infrared spectroscopy, nuclear magnetic resonance methods. The results showed that there was peroxo tungstic acid structure in the catalyst structure, which is the effective structure for epoxidation. The effects of reaction parameters on the epoxidation of soybean oil were then discussed in detail. The impact of pH was most crucial, as concentration of the most important catalytic intermediates was highest. Effect of expoxidation catalyzed by [(C18H37)2N(CH3)2]3{PO4[WO(O2)2]4} was best: a selectivity of 91.64% and a conversion of 94.62% were achieved. Frontier orbital mechanism of epoxidation of these oils with vice-family transition metal compounds (tungsten, methyltrioxorhenium and so on) occurred through the interactions between the oils unsaturated sites HOMOπ(C-C) and the unoccupied peroxoσ*(O-O) orbital. Epoxidation of vegetable oils by manganese had been investigated in the end, results showed that conversion of manganese-catalyzed system in epoxidation is relatively low, so this catalytic system unsuitable for epoxidation of the long-chain unsaturated compounds.
     The kinetics and thermodynamics of the epoxidation of vegetable oils by traditional route (formic acid) and new routes (peroxophosphatotungstate, methyltrioxorhenium) with aqueous hydrogen peroxide were investigated in Chapter 4. The mathematical model that described the kinetics of epoxidation was developed. Kinetic and thermodynamics parameters were estimated by fitting experimental data using the linear fit method. The activation energy for the epoxidation reaction decreased in the following order: peroxophosphatotungstate > formic acid > methyltrioxorhenium; rapeseed oil < soybean oil < sunflower oil, fatty acid methyl ethers < soybean oil.
     Compared with traditional method, the new methods have advantages as follows: It is not only safe for operation but also reducing the discharge of acid waste water. The novel epoxidations are mild, quick and efficient reactions, and by-product of the reaction is only water. Selectivity and conversion of epoxidation are quite high. In addition to these, it also provides a green and efficient synthetic method of epoxidation for other long-chain unsaturated carbon-carbon organic compounds.
引文
[1] Paul T. Anastas, John C. Warner. Green chemistry: theory and practice [M]. Oxford University Press, USA, 2000
    [2] Trost B. M. The atom economy–a search for synthetic efficiency [J]. Science, 1991, 254(5037): 1471-1477
    [3] Mike Lancaster. Green Chemistry: an introductory text [M]. Royal Society of Chemistry, UK, 2002
    [4] Young R. V., Sessine S. World of Chemistry [M]. Gale Group, Detroit, 2000
    [5] Watanabe Y., Yamamoto K., Tatsumi T. Epoxidation of alkenes catalyzed by heteropolyoxometalate as pillars in layered double hydroxides [J]. J. Mol. Catal. A: Chem., 1999, 145(2): 281-289
    [6] Noritaka Mizuno, Kazuya Yamaguchi, Keigo Kamata. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates [J]. Coord. Chem. Rev., 2005, 249(17): 1944-1956
    [7] Jaspal Kaur, Ivan V. Kozhevnikov. Polyoxometalate-catalysed epoxidation of propylene with hydrogen peroxide: microemulsion versus biphasic process [J]. Catal. Commun., 2004, 5(11): 709-713
    [8] Junko Ichihara, Katsuma Iteya, Akihiro Kambara, et al. New approach to environmentally benign epoxidation: the solid-phase-system using urea–H2O2 and recyclable dodecatungstate on apatite [J]. Catal. Today., 2003, 87(2): 163-169
    [9] Ursula Biermann, Wolfgang Friedt, Siegmund Lang, et al. New syntheses with oils and fats as renewable raw materials for the chemical industry [J]. Angew. Chem. Int. Ed., 2000, 39(13): 2206-2224
    [10] Horst Baumann, Matthias Bühler, Heinz Fochem, et al. Natural fats and oils-renewable raw materials for the chemical industry [J]. Angew. Chem. Int. Ed., 1988, 27(1): 41-62
    [11] Piotr Czub. Application of modified natural oils as reactive diluents for epoxy resins [J]. Macromol. Symp., 2006, 242(1): 60-64
    [12] Benaniba M. T., Bensemra-Bensemra N., Gelbard G. Stabilization of PVC by epoxidized sunflower oil in the presence of zinc and calcium stearates [J]. Polym. Degrad. Stabil., 2003, 82(2): 245-249
    [13] Das Gautam, Karak Niranjan. Epoxidized Mesua ferrea L. seed oil-based reactive diluent for BPA epoxy resin and their green nanocomposites [J]. Prog. Org. Coat., 2009, 66(1): 59-64
    [14] Michael A. R. Meier, Jürgen O. Metzger, Ulrich S. Schubert. Plant oil renewable resources as green alternatives in polymer science [J]. Chem. Soc. Rev., 2007, 36(11):1788-1802
    [15] Karlheinz Hill. Fats and oils as oleochemical raw materials [J]. Pure. Appl. Chem. 2000, 72(7): 1255-1264
    [16] Yadav G. D., Satoskar D. V. Kinetics of epoxidation of alkyl esters of undecylenic acid: comparison of traditional routes vs. ishii-venturello chemistry [J]. J. Am. Oil. Chem. Soc., 1997, 74(4): 397-407
    [17] Thomas W. Findley, Daniel Swern, John T. Scanlan. Epoxidation of unsaturated fatty materials with peracetic acid in glacial acetic acid solution [J]. J. Am. Chem. Soc., 1945, 67(3): 412-414
    [18] L. H. Gan, K. S. Ooi, L. M. Gan, et al. Effects of epoxidation on the thermal oxidative stabilities of fatty acid esters derived from palm olein [J]. J. Am. Oil. Chem. Soc., 1995, 72(4): 439-442
    [19] Schmitz W. R., Wallace J. G. Epoxidation of methyl oleate with hydrogen peroxide [J]. J. Am. Oil. Chem. Soc., 1954, 31(9): 363-365
    [20] Michael Thor Pope. Heteropoly and isopoly oxometalates [M]. Springer-Verlag, USA, 1983
    [21] Achim Müller, Frank Peters, Michael T. Pope, et al. Polyoxometalates: Very large clusters-nanoscale magnets [J], Chem. Rev., 1998, 98(1): 239-272
    [22] Ivan V. Kozhevnikov. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chem. Rev., 1998, 98(1): 171-198
    [23] Hill. C. L. Introduction: Polyoxometalates-multicomponent molecular vehicles to probe fundamental issues and practical problems [J]. Chem. Rev., 1998, 98(1): 1-2
    [24] Masatoshi Hamamoto, Kouichi Nakayama, Yutaka Nishiyama, et al. Oxidation of organic substrate by a molecular oxygen/ aldehyde/ heteropolyoxometalate System [J]. J. Org. Chem., 1993, 58(23): 6421-6425
    [25] Nishiyama Y., Nakagawa Y., Mizuno N. High turnover numbers for the catalytic selective epoxidation of alkenes with 1 atm of molecular oxygen [J]. Angew. Chem. Int. Ed., 2001, 40(19): 3639-3641
    [26] Yanyong Liu, Kazuhisa Murata, Megumu Inaba, et al. Direct epoxidation of propylene by molecular oxygen over Pd(OAc)2-[(C6H13)4N]3{PO4[W(O)(O2)2]4}-CH3OH catalytic system [J]. Appl. Catal. B: Environ., 2005, 58(1): 51– 59
    [27] Yanyong Liu, Kazuhisa Murata, Megumu Inaba. New peroxo-polyoxometalates pillared hydrotalcite catalyst for propylene epoxidation by molecular oxygen in methanol [J]. Chem. Lett. 2006, 35(4): 436-437
    [28] Yanyong Liu, Kazuhisa Murata, Toshiaki Hanaoka, et al. Syntheses of newperoxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol [J]. J. Catal., 2007, 248(2): 277-287
    [29] Alexander M. Khenkin, Ronny Neumann, Alexander B. Sorokin, et al. Aerobic hydrocarbon oxidation catalyzed by the vanadomolybdophosphate polyoxometalate, H5PV2Mo10O40, supported on mesoporous MCM-41 [J]. Catal. Lett., 1999, 63(3): 189-192.
    [30] Iwao Tabushi, Noboru Koga. P-450 type oxygen activation by porphyrin-manganese complex [J]. J. Am. Chem. Soc., 1979, 101(21): 6456-6458
    [31] John T. Groves, Robert Quinn. Aerobic epoxidation of olefins with ruthenium porphyrin catalysts [J]. J. Am. Chem. Soc., 1985, 107(20): 5790-5792
    [32] Bernard Meunier. Metalloporphyrins as versatile catalysts for oxidation reaction and oxidative DNA cleaveage [J]. Chem. Rev., 1992, 92(6): 1411-1456
    [33] Benjamin S. Lane, Kevin Burgess. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide [J]. Chem. Rev., 2003, 103(7): 2457-2474
    [34] Ryoji Noyori, Masao Aoki, Kazuhiko Sato. Green oxidation with aqueous hydrogen peroxide [J]. Chem. Commun., 2003, (16): 1977-1986
    [35] Dirk E. De Vos, Bert F. Sels, Pierre A. Jacobs. Practical heterogeneous catalysts for epoxide production [J]. Adv. Synth. Catal., 2003, 345(4): 457-473
    [36] Jean-Marie Bregeault. Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies [J]. Dalton. Trans., 2003, (17): 3289-3302
    [37] Carlo Venturello, Enzo Alneri, Marco Ricci. A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions [J]. J. Org. Chem., 1983, 48(21): 3831-3833
    [38] Yasutaka Ishii, Kazumasa Yamawaki, Toshikazu Ura, et al. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols,ketonization of alcohols and diols,and oxidative cleavage of 1,2-diols and olefins [J]. J. Org. Chem., 1988, 53(15): 3587-3593
    [39] Ramaswamy Murugavel, Herbert W. Roesky. Titanosilicates: recent developments in synthesis and use as oxidation catalysts [J]. Angew. Chem. Int. Ed., 1997, 36(5): 477-479
    [40] Carlo Perego, Angela Carati, Patrizia Ingallina, et al. Production of titanium containing molecular sieves and their application in catalysis [J]. Appl. Catal. A: G., 2001, 221(1): 63-72
    [41] Shinji Ueno, Kazuya Yamaguchi, Kazushi Yoshida, et al. Hydrotalcite catalysis: heterogeneous epoxidation of olefins using hydrogen peroxide in the presence of nitriles [J]. Chem. Commun., 1998, (3): 295-296
    [42] Susana L. H. Rebelo, Mariette M. Pereira, Mário M. Q. Sim?es, et al. Mechanisticstudies on metalloporphyrin epoxidation reactions with hydrogen peroxide: evidence for two active oxidative species [J]. J. Catal., 2005, 234(1): 76-87
    [43] Hans Adolfsson, Christophe Copéret, Jay P. Chiang, et al. Efficient epoxidation of alkenes with aqueous hydrogen peroxide catalyzed by methyltrioxorhenium and 3-cyanopyridine [J]. J. Org. Chem., 2000, 65(25): 8651-8658
    [44] Maxim L. Kuznetsov, Armando J. L. Pombeiro. Radical Formation in the [MeReO3]-catalyzed aqueous peroxidative oxidation of alkanes: a theoretical mechanistic study [J]. Inorg. Chem., 2009, 48(14): 307-318
    [45] Gharah Narottam, Chowdhury Krishna, Mukherjee Monika, et al. Synthesis and crystal structure of a mixed valence heteropoly green compound, (PPh4)(4)[PMo12O40], and its use as a catalyst in olefin epoxidation [J]. Transition Met. Chem. 2008, 33(5): 635-642
    [46] Carlo Venturello, Rino D'Aloisio, Jan C. J. Bart, et al. A new peroxotungsten heteropoly anion with special oxidizing properties: synthesis and structure of tetrahexylammonium tetra (diperoxotungsto) phosphate (3-) [J]. J. Mol. Catal., 1985, 32(1): 107-110
    [47] Carlo Venturello, Rino D'Aloisio. Quaternary ammonium tetrakis (diperoxotungsto) phosphates (3-) as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide Quaternary ammonium tetrakis(diperoxotungsto)phosphates(3-) as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide [J]. J. Org. Chem., 1988, 53(7): 1553-1557.
    [48] Yasuhiro Matoba, Hiroshi Inoue, Jun-Ichi Akagi. et al. Epoxidation of allylic alcohols with hydrogen peroxide catalyzed by [PMO12O40]3-[C5H5N(CH2)15CH3]3 [J]. Synth. Commun., 1984, 14(9): 865-873
    [49] Kazuhiko Sato, Masao Aoki, Masami Ogawa, et al. A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions [J]. J. Org. Chem., 1996, 61(23): 8310-8311.
    [50] Yu Sun, Zuwei Xi, Guoying Cao. Epoxidation of olefins catalyzed by [π-C5H5NC16H33]3[PW4O16] with molecular oxygen and recyclable reductant 2-ethylanthrahydroquinone [J]. J. Mol. Catal. A: Chem., 2001, 166(2): 219-224
    [51] Xi Zuwei, Zhou Ning, Sun Yu, et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide [J]. Science, 2001, 292(5519): 1139-1411
    [52] Bert F. Sels, Aida L. Villa, Dirk Hoegaerts, et al. Application of heterogenized oxidation catalysts to reactions of terpenic and other olefins with H2O2 [J]. Top. Catal., 2000, 13(3): 223-229
    [53] Aída L. Villa de P., Bert F. Sels, Dirk E. De Vos, et al. A heterogeneous tungsten catalyst for epoxidation of terpenes and tungsten–catalyzed synthesis of acid-sensitive terpeneepoxides [J]. J. Org. Chem., 1999, 64(19): 7267-7270
    [54] Ronny Neumann, Hagit Miller. Alkene oxidation in water using hydrophobic silica particles derivatized with polyoxometalates as catalysts [J]. Chem. Commun., 1995, (22): 2277-2278
    [55] Ronny Neumann, Michal Cohen. Solvent-anchored supported liquid phase catalysis: polyoxometalate-catalyzed oxidations [J]. Angew. Chem. Int. Ed., 1997, 36(16): 1738-1740
    [56] Bert F. Sels, Dirk E. De Vos, Pierre A. Jacobs. Use of WO42- on layered double hydroxides for mild oxidative bromination and bromide-assisted epoxidation with H2O2 [J]. J. Am. Chem. Soc., 2001, 123(34): 8350-8359
    [57] Pierre Gouzerh, Anna Proust. Main-group element, organic, and organometallic derivatives of polyoxometalates [J]. Chem. Rev., 1998, 98(1): 77-112
    [58] Noritaka Mizuno, Makoto Misono. Heterogeneous catalysis [J]. Chem. Rev., 1998, 98(1): 199-218
    [59] Ronny Neumann. Polyoxometalate complexes in organic oxidation chemistry [J]. Prog. Inorg. Chem., 1998, 47(3): 317-370
    [60] Craig L. Hill, Christina M., Prosser-McCartha. Homogeneous catalysis by transition metal oxygen anion clusters [J]. Coord. Chem. Rev., 1995, 143(3): 407-455
    [61] Eugenio Coronado, Carlos J. Gómez-García. Polyoxometalate-based molecular materials [J]. Chem. Rev., 1998, 98(1): 273-296
    [62] N. I. Kuznetsova, L. I. Kuznetsova, V. A. Likholobov. Catalytic properties of Cr-containing heteropolytungstates in H2O2 participated reactions: H2O2 decomposition and oxidation of unsaturated hydrocarbons with H2O2 [J]. J. Mol. Catal. A: Chem. 1996, 108(3): 135-143.
    [63] Kato C. N., Negishi S., Yoshida K., et al. The strong influence of structures around titanium centers in dimeric mono-, di-, and tri-titanium (IV) - substituted Keggin polyoxotungstates on the catalytic epoxidation of alkenes with H2O2 [J]. Appl. Catal. A: Gen, 2005, 292(1): 97-104
    [64] Chika Nozaki Kato, Satoshi Negishi, Kouichiro Yoshida, et al. A novel Ti-O-Ti bonding species constructed in a metal-oxide cluster [{Ti(OH2)(ox)}2(μ-O)(α-PW11O39)]5- as a precatalyst: Epoxidation of alkenes with hydrogen peroxide [J]. J. Mol. Catal. A: Chem., 2007, 262(1): 25-29
    [65] Noritaka Mizuno, Chika Nozaki, Ikuro Kiyoto, et al. Selective oxidation of alkenes catalyzed by di-Iron-substituted silicotungstate with highly efficient utilization of hydrogen peroxide [J] J. Catal., 1999, 182(1): 285-288
    [66] Noritaka Mizuno, Ikuro Kiyoto, Chika Nozaki, et al. Remarkable structure dependenceof intrinsic catalytic activity for selective oxidation of hydrocarbons with hydrogen peroxide catalyzed by Iron-substituted silicotungstates [J]. J. Catal., 1999, 181(2): 171-174
    [67] Israel Martyr Mbomekalle, Bineta Keita, Louis Nadjo, et al. Manganous heteropolytungstates. Synthesis and heteroatom effects in Wells-Dawson-derived sandwich complexes [J]. Dalton. Trans., 2003, (13): 2646-2650
    [68] Zuwei Xi, Haiping Wang, Yu Sun, et al. Direct epoxidation of olefins catalyzed by heteropolyoxometalates with molecular oxygen and recyclable reductant [J]. J. Mol. Catal. A: Chem., 2001, 168(2): 299-301.
    [69] Keigo Kamata, Koji Yonehara, Yasutaka Sumida, et al. Efficient epoxidation of olefins with≥99% selectivity and use of hydrogen peroxide [J]. Science, 2003, 300(5621): 964-966
    [70] Keigo Kamata, Yoshinao Nakagawa, Kazuya Yamaguchi, et al. Efficient, regioselective epoxidation of dienes with hydrogen peroxide catalyzed by [γ-SiW10O34(H2O)2]4- [J]. J. Catal., 2004, 224(1): 224-228
    [71] Kasai Jun, Nakagawa Yoshinao, Uchida Sayaka, et al. [γ-1,2-H2SiV2W10O40]4- immobilized on surface-modified SiO2 as a heterogeneous catalyst for liquid-phase oxidation with H2O2 [J]. Chem. Eur. J., 2006, 12(15): 4176-4184
    [72] Wolfgang A. Herrmann, Richard W. Fischer, Dieter W. Marz. Methyltrioxorhenium as catalyst for olefin oxidation [J]. Angew. Chem. Int. Ed., 1991, 30(14): 1638-1641
    [73] Wolfgang A. Herrmann, Richard W. Fischer, Wolfgang Scherer. Methyltrioxorhenium(Ⅶ) as catalyst for olefin epoxidation: strcture of the active species and mechanism of catalysis [J]. Angew. Chem. Int. Ed., 1993, 32(8): 1157-1160
    [74] Philipp Altmann, Fritz E. Kühn. Methyltrioxorhenium catalysed epoxidations: A comparative study of different N-donor ligands [J]. J. Organomet. Chem., 2009, 694: 4032-4035
    [75] Taramasso Marco, Perego Giovanni, Notari Bruno. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxide [P]. USP, 4410501, 1983-10-08
    [76] L. A. Rios, P. Weckes, H. Schuster, et al. Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils [J]. J. Catal. 2005, 232(1): 19– 26
    [77] Hailian Jin, Nanzhe Jiang, Soon-Moon Oh, et al. Epoxidation of linear olefins over stacked TS-1 zeolite catalysts [J]. Top. Catal., 2009, 52(1):169-177
    [78] J. A. Melero, J. Iglesias, J.M. Arsuaga, et al. Synthesis, characterization and catalytic activity of highly dispersed Mo-SBA-15 [J] Appl. Catal. A: Gen., 2007, 331(1): 84-94
    [79] Maria Jose Jurado, Maria Dolores Gracia, Juan Manuel Campelo, et al. Selective epoxidation of alkenes using highly active V-SBA-15 materials: microwave vs. conventional heating [J]. J. Mater. Chem., 2009, (19): 8603-8609
    [80] Ng Yun Hau, Izan Izwan Misnon, Hadi Nur, et al. Biphasic epoxidation of 1-octene with H2O2 catalyzed by amphiphilic fluorinated Ti-loaded zirconia [J]. J. Fluorine Chem., 2007, 128(1): 12-16
    [81] Hadi Nur, Yun Hau Ng, Izan Izwan Misnon, Hydrophobic fluorinated TiO2-ZrO2 as catalyst in epoxidation of 1-octene with aqueous hydrogen peroxide [J]. Mater. Lett., 2006. 60(18): 2274-2277
    [82] Chun-Jing Liu, Wing-Yiu Yu, Shou-Gui Li, et al. Ruthenium meso-tetrakis (2,6-dichlorophenyl) porphyrin complex immobilized in mesoporous MCM-41 as a heterogeneous catalyst for selective alkene epoxidations [J]. J Org Chem, 1998, 63(21): 7364-7369
    [83] Xian-Tai Zhou, Qing-Hua Tang, Hong-Bing Ji. Remarkable enhancement of aerobic epoxidation reactivity for olefins catalyzed by l-oxo-bisiron(III) porphyrins under ambient conditions [J]. Tetrahedron Lett., 2009, 50(47): 6601-6605
    [84] Majid Moghadam, Shahram Tangestaninejad, Valiollah Mirkhani, et al. Host (nanocavity of zeolite-Y or X)-guest (manganese (III) tetrakis [4-N-methylpyridinum] porphyrin) nanocomposite materials as efficient catalysts for biomimetic alkene epoxidation with sodium periodate: Shape-selective epoxidation of linear alkenes [J]. J. Mol. Catal. A: Chem., 2009, 302(1): 68-75
    [85] M. Masteri-Farahani, F. Farzaneh, M. Ghandi. Synthesis of tetradentate N4 Schiff base dioxomolybdenum (VI) complex within MCM-41 as selective catalyst for epoxidation of olefins [J]. Catal. Commun., 2007, 8(1): 6-10
    [86] Sofia M. Bruno, JoséA. Fernandes, Luísa S. Martins, et al. Dioxomolybdenum(VI) modified mesoporous materials for the catalytic epoxidation of olefins [J]. Catal. Today, 2006, 114(3): 263-271
    [87] M. Masteri-Farahani, F. Farzaneh, M. Ghandi. Synthesis and characterization of molybdenum complexes with bidentate Schiff base ligands within nanoreactors of MCM-41 as epoxidation catalysts [J]. J. Mol. Catal. A: Chem., 2006, 248(1): 53-60
    [88] Sahar I. Mostafa, Shigeru Ikeda, Bunsho Ohtani. Transition metal Schiff-base complexes chemically anchored on Y-zeolite: their preparation and catalytic epoxidation of 1-octene in the suspension and phase boundary systems [J]. J. Mol. Catal. A: Chem., 2005, 225(2): 181-188
    [89] Wenshan Ren, Xiangkai Fu. Chiral Mn (III) salen complexes covalently bonded on zirconium oligostyrenylphosphonate-phosphates as catalysts for enantioselective epoxidation of nonfunctionalized alkenes [J]. J. Mol. Catal. A: Chem., 2009, 312(1): 40-47
    [90] Bunnai Saito, Tsutomu Katsuki. Synthesis of an optically active C1-Symmetric Al(salalen)complex and its application to the catalytic hydrophosphonylation of aldehydes [J]. Angew. Chem., 2005, 44(29): 4676-4678
    [91] Yuji Sawada, Kazuhiro Matsumoto, Shoichi Kondo, et al. Titanium-Salan-catalyzed asymmetric epoxidation with aqueous hydrogen peroxide as the oxidant [J]. Angew. Chem., 2006, 118(21): 3558-3560
    [92] Man Kin Tse, Christian D?bler, Santosh Bhor, et al. Ruthenium-katalysierte asymmetrische epoxidierung mit Wasserstoffperoxid als oxidationsmittel [J]. Angew. Chem., 2004, 116(39): 5367-5372
    [93] Isabel W. C. E. Arends. Metal-catalyzed asymmetric epoxidations of terminal olefins using hydrogen peroxide as the oxidant [J]. Angew. Chem. Int. Ed., 2006, 45(38): 6250-6252
    [94] Mariana G. Topuzova, Stefan V. Kotov, Tsonko M. Kolev. Epoxidation of alkenes in the presence of molybdenum-squarate complexes as novel catalysts [J]. Appl. Catal. A: Gen., 2005, 281(2): 157-166
    [95] Jeanette E. Ziegler, Guodong Du, Philip E. Fanwick, et al. An efficient method for the preparation of oxo molybdenum salen complexes and their unusual use as hydrosilylation catalysts [J]. Inorg. Chem., 2009, 48(23): 11290-11296
    [96] Tan Rong, Yin Donghong, Yu Ningya, et al. Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn(III) complex for enantioselective epoxidation of styrene [J]. J. Catal., 2009, 283(2): 284-291
    [97] Xu Zheng, Ma Xuebing, Ma Yueyue, et al. Zirconium phosphonates-supported chiral Mn (III) salen complexes for the asymmetric epoxidation of unfunctionalized olefins [J]. Catal. Commun., 2009, 10(8): 1261-1266
    [98] Gong Biwei, Fu Xiangkai, Chen Junxian, et al. Synthesis of a new type of immobilized chiral salen Mn(III) complex as effective catalysts for asymmetric epoxidation of unfunctionalized olefins [J]. J. Catal., 2009, 262(1): 9-17
    [99] Yu Kai, Gu Zhicheng, Ji Runan, et al. Heterogeneous chiral Mn(III) salen catalysts for the epoxidation of unfunctionalized olefins immobilized on mesoporous materials with different pore sizes [J]. Tetrahedron, 2009, 65(1): 305-311
    [100] Rupam Sen, Susmita Bhunia, Dasarath Mal, et al. Layered transition metal carboxylates: Efficient reusable heterogeneous catalyst for epoxidation of olefins [J]. Langmuir, 2009, 25(23): 13667-13672
    [101] Mehdi Hatefi, Majid Moghadam, Iran Sheikhshoaei, et al. Ru(salophen)Cl supported on polystyrene-bound imidazole: An efficient and robust heterogeneous catalyst for epoxidation of alkenes with sodium periodate [J]. Appl. Catal. A: Gen., 2009, 370(1): 66-71
    [102] Subhajit Dinda, Michael G. B. Drew, Ramgopal Bhattacharyya. Oxo-rhenium(V)complexes with bidentate phosphine ligands: Synthesis, crystal structure and catalytic potentiality in epoxidation of olefins using hydrogen peroxide activated bicarbonate as oxidant [J]. Catal. Commun., 2009, 10(5): 720-724
    [103] Wong O. Andrea, Shi Yian. Organocatalytic Oxidation. Asymmetric Epoxidation of Olefins Catalyzed by Chiral Ketones and Iminium Salts [J]. Chem. Rev., 2008, 108(9): 3958-3987
    [104] Nandakumar Mecheril Valsan, Ghosh Subrata, Schneider Christoph. Enantioselective synthesis of a novel chiral 2,9-disubstituted 1,10-phenanthroline and first applications in asymmetric catalysis [J]. Eur. J. Org. Chem., 2009, (36): 6393-6398
    [105] Li Jian, Hu Feng, Xie Xiao-Ke, et al. Synthesis of new functionalized chiral ionic liquid and its organocatalytic asymmetric epoxidation in water [J]. Catal. Commun., 2009, 11(4): 276-279
    [106] Wong O. Andrea, Shi Yian. Asymmetric epoxidation of fluoroolefins by chiral dioxirane. fluorine effect on enantioselectivity [J]. J. Org. Chem., 2009, 74(21): 8377-8380
    [107] Sarma Kuladip, Goswami Amrit, Goswami Bhabesh C. Exploration of chiral induction on epoxides in lipase-catalyzed epoxidation of alkenes using (2R,3S,4R,5S)-(-)-2,3: 4,6-di-O-isopropylidiene-2-keto-gulonic acid monohydrate [J]. Tetrahedron: Asymmetry, 2009, 20(11): 1295-1300
    [108] Francisco Sarabia, Samy Chammaa, Miguel García-Castro, et al. A highly efficient methodology of asymmetric epoxidation based on a novel chiral sulfur ylide [J]. Chem. Commun., 2009, (38): 5763-5765
    [109] Christopher P. Burke, Yian Shi. Enantioselective epoxidation of nonconjugated cis-olefins by chiral dioxirane [J]. Org. Lett., 2009, 11(22):5150-5154
    [110] O. Andrea Wong, Bin Wang, Mei-Xin Zhao, et al. Asymmetric epoxidation catalyzed byα,α-dimethylmorpholinone ketone. methyl group effect on spiro and planar transition states [J]. J. Org. Chem., 2009, 74(16): 6335-6338
    [111] E. Angelescu, O. D. Pavel, R. Birjega, et al. The impact of the "memory effect" on the catalytic activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation [J]. Appl. Catal. A: Gen., 2008, 341(1): 50-57
    [112] Shinji Ueno, Kazuya Yamaguchi, Kazushi Yoshida, et al. Hydrotalcite catalysis: heterogeneous epoxidation of olefins using hydrogen peroxide in the presence of nitriles [J]. Chem. Commun., 1998, (3): 295-296
    [113] Ilham Kirm, Francesc Medina, Xavier Rodríguez, et al. Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts [J]. Appl. Catal. A: Gen., 2004, 272(1): 175-185
    [114] Guodong Du, Aziz Tekin, Earl G. Hammond, et al. Catalytic epoxidation of methyl linoleate [J]. J. Am. Oil Chem. Soc., 2004, 81(5): 477-480
    [115] Rinaldi Roberto, Fujiwara Fred Y., H?lderich Wolfgang, et al. Tuning the acidic properties of aluminas via sol-gel synthesis: New findings on the active site of alumina-catalyzed epoxidation with hydrogen peroxide [J]. J. Catal., 2006, 244(1): 92-101
    [116] Jorge Sepulveda, Sergio Teixeira, Ulf Schuchardt. Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide [J]. Appl. Catal. A: Gen., 2007, 318: 213.
    [117] Paulo A. Z. Suarez, Mírian S. C. Pereira, Kenneth M. Doll, et al. Epoxidation of methyl oleate using heterogeneous catalyst [J]. Ind. Eng. Chem. Res., 2009, 48(7): 3268-3270
    [118] Alice Maetzke, Svend J. Knak Jensen, Imre G. Csizmadia. Putative mechanisms of peroxybicarbonate formation [J]. Chem. Phys. Lett., 2007, 448(1): 46-48
    [119] Huirong Yao, David E. Richardson. Bicarbonate surfoxidants: micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide [J]. J. Am. Chem. Soc., 2003, 125(20): 6211-6221
    [120] Celeste Aida S. Regino, David E. Richardson. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols [J]. Inorg. Chim. Acta., 2007, 360(14): 3971-3977
    [121] Benjamin S. Lane, Kevin Burgess. A cheap, catalytic, scalable, and environmentally benign method for alkene epoxidations [J]. J. Am. Chem. Soc., 2001, 123(12): 2933-2934
    [122] Benjamin S. Lane, Matthew Vogt, Victoria J. De Rose, et al. Manganese-catalyzed epoxidations of alkenes in bicarbonate solutions [J]. J. Am. Chem. Soc., 2002, 124(40): 11946-11954
    [123] Shuang-Fei Cai, Li-Sheng Wang, Chuan-Lei Fan, Catalytic epoxidation of a technical mixture of methyl oleate and methyl linoleate in ionic liquids using MoO(O2)2·2QOH (QOH = 8-quinilinol) as catalyst and NaHCO3 as co-catalyst [J]. Molecules, 2009, 14(8): 2935-2946
    [124] Koeckritz, Angela, Martin, Andreas, Oxidation of unsaturated fatty acid derivatives and vegetable oils [J]. Eur. J. Lipid. Sci. Technol., 2008, 11(9): 812-824
    [125] Tufvesson Paer, Adlercreutz Dietlind, Lundmark Stefan, et al. Production of glycidyl ethers by chemo-enzymatic epoxidation of allyl ethers [J]. J. Mol. Catal. B: Enzym., 2008, 54(1): 1-2
    [126] Schneider Rosana de Cassia S, Lara Luciano R. S., Bitencourt Thiago B., et al. Chemo-enzymatic epoxidation of sunflower oil methyl esters [J]. J. Brazil. Chem. Soc., 2009, 20(8): 1473-1477
    [127] Hessenauer-Ilicheva Natalya, Franke Alicja, Meyer Dominik, et al. Low-temperature rapid-scan detection of reactive intermediates in epoxidation reactions catalyzed by a new enzyme mimic of cytochrome p450 [J]. J. Am. Chem. Soc., 2009, 129(41): 12473-12479
    [128] Pirmin A. Ulmann, Adam B. Braunschweig, One-Sun Lee, et al. Inversion of product selectivity in an enzyme - inspired metallosupramolecular tweezer catalyzed epoxidation reaction [J]. Chem.Commun., 2009, (34): 5121-5123
    [129] Rüsch gen, G. Klaas, M. Warwel S. Chemoenzymatic epoxidation of unsaturated fatty acid esters and plant oils [J]. J. Am. Oil Chem. Soc., 1996, 73(11): 1453-1457
    [130] Yi Xu, Na Ranong Bo Jian Khaw, Zhi Li. Efficient epoxidation of alkenes with hydrogen peroxide, lactone,and lipase [J]. Green Chem., 2009, (11): 2047-2051
    [131] Joos Wahlen, Dirk E. De Vos, Pierre A. Jacobs. Activation of hydrogen peroxide through hydrogen-bonding interaction with acidic alcohols: epoxidation of alkenes in phenol [J]. Org. Lett., 2003, 5(10): 1777-1780
    [132] Héctor García-Marín, John C. van der Toorn, JoséA. Mayoral. Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide [J]. Green Chem., 2009, (11): 1605-1609
    [133] Lide D. R. CRC Handbook of Chemistry and Physics [M], 81st ed.; CRC Press: Boca Raton, FL, 2000.
    [134] Wynberg H., Greijdanus B. Solvent effects in homogeneous asymmetric catalysis [J]. J. Chem. Soc. Chem. Commun., 1978, (10): 427-428
    [135] Hiroshi Kakiuchi, Takeshi Endo. Study of epoxy compounds. XI: solvent effects in the reaction of benzoic acid with phenyl glycidyl ether by a basic catalyst [J]. Bull. Chem. Soc. Jpn., 1967, 40(3): 892-899
    [136] Peter Wasserscheid, Wilhelm Keim. Ionic Liquids-New“Solutions”for Transition Metal Catalysis [J]. Angew. Chem. Int. Ed., 2000, 39(21): 3772-3789
    [137] Dirk V. Deubel, J?rg Sundermeyer, Gernot Frenking. Olefin epoxidation with transition metalη2-peroxo complexes: the control of reactivity [J]. Eur. J. Inorg. Chem., 2001, (7): 1819-1827
    [138] Yong Ding, Qing Gao, Guixian Li, et al. Selective epoxidation of cyclohexene to cyclohexene oxide catalyzed by Keggin-type heteropoly compounds using anhydrous urea–hydrogen peroxide as oxidizing reagent and acetonitrile as the solvent [J]. J. Mol. Catal. A: Chem., 2004, 218(2): 161-171
    [139] Dean C., Duncan R., Carlisle Chambers, et al. Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of {PO4[WO(O2)2]4}3- [J]. J. Am. Chem. Soc., 1995, 117(2): 681-691
    [140] Laurent Salles, Catherine Aubry, Rene Thouvenot, et al. 31P and 183W NMR spectroscopic evidence for novel peroxo species in the "H3[PW12O40].cntdot.yH2O/H2O2" system. Synthesis and X-ray structure of tetrabutylammonium (.mu.-hydrogen phosphato) bis (.mu.-peroxo) bis (oxoperoxotungstate) (2-): A catalyst of olefin epoxidation in a biphase medium [J]. Inorg. Chem., 1994, 33(5): 871-878
    [141] George B. Payne, Paul H. Williams. Reactions of hydrogen peroxide. IV. Sodium tungstate catalyzed epoxidation ofα,β-unsaturated acids [J]. J. Org. Chem., 1959, 24(1): 54-55
    [142] Kenneth S. Kirshenbaum, K. Barry Sharpless. Improved procedure for the tungstate-catalyzed epoxidation of .alpha.,. beta.-unsaturated acids [J]. J. Org. Chem., 1985, 50(11): 1979-1982
    [143] Hubert Mimoun. Oxygen transfer from inorganic and organic peroxides to organic substrates: A common mechanism? [J]. Angew. Chem. Int. Ed., 1982, 21(10): 734-750
    [144] H. Mimoun. The role of peroxymetallation in selective oxidative processes [J]. J. Mol. Catal., 1980, 7(1): 1-29
    [145] Bharath Rangarajan, Adam Havey, Eric A. Grulke, et al. Kinetic parameters of a two-phase model forin situ epoxidation of soybean oil [J]. J. Am. Oil. Chem. Soc., 1995, 72(10): 1161-1169
    [146] L. H. Gan, S. H. Goh, K. S. Ooi. Kinetic studies of epoxidation and oxirane cleavage of palm olein methyl esters [J]. J. Am. Oil. Chem. Soc., 1992, 69(4): 347-351
    [147] Frederick C. Frostick Jr., Benjamin Phillips, Paul S. Starcher. Synthesis of some epoxy vinyl monomers by epoxidation with peracetic acid1 [J]. J. Am. Chem. Soc., 1959, 81(13): 3350-3356
    [148] A. A. Frost, R. G. Pearson. Kinetics and Mechanism [M]. 2nd Edn. John Wiley, New York, NY (USA) 1961
    [149] Morrica P., Barbato F., Iacova R. D., et al. Kinetics and mechanism of imazosulfuron hydrolysis [J]. J. Agric. Food Chem., 2001, 49(8): 3816-3820