直接甲醇燃料电池用质子交换膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)具有安全可靠、携带方便、甲醇来源丰富等优点,是一种很有前景的清洁能源技术。质子交换膜是直接甲醇燃料电池的关键材料之一,但目前应用最广泛的Nafion膜由于保水性差、阻醇性能差、成本高昂等原因,限制了直接甲醇燃料电池的大规模商业化。针对这些缺点,本文以提高保水性、提高阻醇性能和降低成本为出发点,制备了三种质子交换膜,获得了以下一些成果:
     采用掺杂亲水无机物的方法改性Nafion膜,对SiO2分子筛进行了磺化,并制备了Nafion/磺化SiO2分子筛复合膜。XRD和SEM表明分子筛在膜内分布均匀。实验结果表明,复合膜的含液率要大于Nafion膜,并且有较好的抗溶胀能力。综合性能是磺化SiO2分子筛含量为5 wt%的复合膜最好,甲醇透过率比Nafion膜降低了一个数量级,而质子传导率都在0.01 S/cm以上,能满足燃料电池的应用要求。
     采用一步法合成了一种新的磺化聚酰亚胺(SPI),并制备成膜。结果表明,SPI膜具有比Nafion膜更高的含液率和溶胀度,但对温度和甲醇浓度不太敏感;质子传导率随着磺化度的提高而增大,只比Nafion膜略低;甲醇透过率随着磺化度的提高而增大,但仍低于Nafion膜。
     采用共混法制备了磺化聚酰亚胺/聚偏氟乙烯(SPI/PVDF)共混膜,SEM和XRD均表明PVDF在膜内分别比较均匀,但PVDF含量高时共混膜发生了相分离。与纯SPI膜相比,共混膜的含液率有所降低,但溶胀度也降低了。质子传导率随着PVDF含量的增大而减小但都大于10-3 S/cm。甲醇透过率随着PVDF含量的增大而降低,远低于Nafion膜,有较好的阻醇性能。
     本论文图64幅,表3个,参考文献76篇。
Direct methanol fuel cell(DMFC) have many advantages, such as safe and reliable, easy to carry, rich source of methanol,et al. It is considered as a promising alternative energy source. Proton exchange membrane is one of the key materials in direct methanol fuel cell. Currently the membrane which is the most widely used is Nafion membrane. However, because of poor water retention, high methanol crossover, high costs and other factors, It has limited the large-scale commercialization of DMFC.In order to improve capacity of water retention and methanol resistant and reduce the cost, three novel proton exchange membranes are fabricated. The innovative achievements obtained are mainly as follows:
     Novel inorganic-organic composite membranes based on Nafion modified by doping hydrophilic inorganic. The SiO2 molecular sieve was sulfonated firstly. Then Nafion/sulfonated SiO2 molecular sieve was fabricated. It was shown by SEM and XRD that molecular sieve was distributed uniformly in the membrane. It was observed that the composite membrane had higher liquid content and better Anti-swelling capacity than Nafion membrane. The membrane with the best overall performance is Nafion/S-SiO2(5wt%) membrane. Compared with Nafion membrane, its methanol permeability had decreased by about one order of magnitude.At the same time, its proton conductivities are all above 0.01S/cm.This membrane can meet the requirements of fuel cell applications.
     A novel sulfonated polyimide was modified by one-step method. Then the SPI membranes were fabricated. It was observed that the liquid content and swelling degree of SPI membrane were higher than Nafion membrane. But they were not sensitive to temperature and methanol concentration. Proton conductivity of SPI membranes increased as the sulfonation degree increased, and is a little lower than Nafion's. Methanol permeability of SPI membranes also increased as the temperature increased,but it was still lower than Nafion's.
     SPI/PVDF blend membranes were fabricated by the methodology of polymer blend. It was shown by SEM and XRD that PVDF was distributed uniformly in the membrane. However, the phase separation existed in blend membranes when the content of PVDF is high. Compared with pristine SPI membrane, liquid content of blend membranes reduced and swelling degree also decreased. Proton conductivity of SPI/PVDF blend membranes reduced as the content of PVDF increased, but they were all above 10-3S/cm. Methanol permeability of SPI membranes also reduced as the content of PVDF increased, and were much lower than Nafion's. Blend membranes had good methanol resistant performance.
     There are 64 figures,3 tables and 76 references in this thesis.
引文
[1]衣宝廉.燃料电池—原理·技术·应用[M].北京:化学工业出版社,2003
    [2]黄倬,屠海令,张冀强等.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社,2000
    [3]詹姆斯·拉米尼,安德鲁·迪克斯著,朱红,衣宝廉译.燃料电池系统:原理·设计·应用[M].北京:科学出版社,2006
    [4]杨武斌.直接甲醇燃料电池用新型质子交换膜的制备与表征[D].北京.北京交通大学.2008,4-5
    [5]陈振兴.高分子电池材料[M].北京:化学工业出版社,2005
    [6]Brian C, Angelika H. Materials for fuel-cell technologies[J]. Nature,2001,414:345-352
    [7]茂盛,李果,余达太,张阳平.质子交换膜燃料电池及其应用前景[J].天然气化工,2003,6:38-42
    [8]贾荣利等.质子交换膜燃料电池关键技术研究进展[J].化学工业与工程,2004,21(6):448-451
    [9]龚春丽,管蓉,杨世芳等.聚合物质子传导电解质膜的研究进展[J].高分子材料科学与工程,2005,21(2):42-46
    [10]潘海燕.磺化杂萘联苯聚醚酮酮及聚酰亚胺质子交换膜的研究[D].大连.大连理工大学.2008,3-4
    [11]Arico A S, Srinivasan S, Antonucci V. DMFCs:From Fundamental Aspects to Technology Development [J]. Fuel cells,2001,1:133-161
    [12]Baxter S F, Battaglia V S, White R E. Methanol fuel cell model:anode[J]. J.Electrochem.Soc,,1999,146(2):437-447
    [13]Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells:aselective review[J]. J.Electroanal.Chem.,1999,461:14-31
    [14]Waidhas M, Drenckhahn W, Preidel W, et al.. Direct-fuelled fuel cells[J]. J.Power Sources, 1996,61:91-97
    [15]Lee S J, Mukerjee S, Trcianelli E A, et al.. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells[J]. Electrochimica Acta,1999,44:3283-3293
    [16]Heinzel A, Barragan V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells[J]. J.Power Sources,1999,84:70-74
    [17]Hogarth M P, Hards G A, Direct methanol fuel cells:Technological advances and further requirements[J]. Platinum Metals Rev.,1996,40:150-159
    [18]汪国雄,孙公权,辛勤.直接甲醇燃料电池[J].物理,2003,33:165-169
    [19]Appleby A J. Fuel cell electrolytes:evolution, properties and future prospects[J]. J. Power Sources,1994,49:15-34
    [20]Murphy O J, Hitchens G D, Manko D J. High power density proton exchange membrane fuel cells[J]. J. Power Sources,1994,47:353-368
    [21]Carla H W. Recent advances in perfluorinated ionomer membranes:structure, properties and applications[J]. J.Membr.Sci.,1996,120:1-33
    [22]衣宝廉,韩明,张恩浚等.千瓦级质子交换膜燃料电池[J].电源技术,1999,23(2):120-125
    [23]Halim J, Buchi F N, Haas O, et al.. Characterization of perfluorosulfonic acic membranes by conductivity measurements and small-angle X-ray scattering[J]. Electrochimica Acta, 1994,39:1303-1307
    [24]Fontanella J J, Wintersgill M C, Chen R S, et al., Charge transport and water molecular motion in variable molecular weight Nafion membranes:high pressure electrical conductivity and NMR[J]. Electrochimica Acta,1995,40(13-14):2321-2326
    [25]Komoroski R A, Mauritz K A. A sodium_23 nuclear magnetic resonance study of ionic mobility and contact ion pairing in a perfluorosulfonate ionomer[J]. Journal of America Chemical Society,1978,100:7487-7489
    [26]Hsu W Y, Girerke T D. Ion transport and clustering in Nafion perfluorinated membranes[J]. Journal of Membrane Science,1983,13(3):307-326
    [27]Lee P C, Meisel D. Luminescence quenching in the cluster network of perfluorosulfonate membrane[J]. Journal of America Chemical Society,1980,102(17):5477-5481
    [28]Yoshitsugu S, Per E, Daniel S. Proton conductivity of Nafion117 as measured by a four-electrode AC impedance method[J]. J.Electrochem.Soc.,1996,143(4):1254-1259
    [29]Cappadonia M, Erning J W, Niaki S M S, et al., Conductance of Nafion 117 membranes as a function of temperature and water content[J]. Solid State Ionics,1995,77:65-69
    [30]Samms S R, Wasmu S, Savinell R F, Thermal stability of Nafion in simulated fuel cell environments[J]. J. Electrochem. Soc.,1996,143(5):1498-1504
    [31]Wang J T, Wasmus S, Savinell R F. Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell[J]. J. Electrochem. Soc.,1996,143(4):1233-1239
    [32]Edmondson C A, Stallworth P E and Wintersgill M C et al. Electrical conductivity and NMRstudies of methanol/water mixtures in Nafion membranes[J]. Electrochim. Acta, 1998,43(10-11):1295-1299
    [33]刘富强,邢丹敏,于景荣等.质子交换膜燃料电池Nafion/PTFE复合膜的研究[J].电化学,2002,8(1):86-92
    [34]Shoibal B. Fuel cell incorporating a reinforced membrane. U.S. Patent 5,795,668,1994
    [35]Lin J C, Ouyang M, Fenton J M, et al. Study of blend membranes consisting of Nafion and vinylidene fluoride-hexafluoropropylene copolymer[J]. J. Appl. Polym. Sci.,1998,70: 121-127
    [36]吴洪,王宇新,王世昌.新型阻醇质子导电聚合物膜——PVA-Nafion共混膜的制备及性能研究[J].高等化学工程学报,2002,16(3),326-330
    [37]吴洪,王宇新,王世昌.聚偏氟乙烯-Nafion共混膜的制备及阻醇质子导电性能的研究[J].高分子学报,2002,4,540-543
    [38]S.W. Choi, Y.-Z. Fu, et al.. Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells[J]. Journal of Power Sources,2008, 180:167-171
    [39]Chen C Y, Rodriguez J I G, Duke M C, et al.. Nation/polyaniline/silica composite membranes for direct methanol fuel cell application[J]. J. Power Sources,2007,166(2): 324-330.
    [40]Jung D H, Cho S Y, Peck D H, et al. Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell[J]. J. Power Sources,2003,118:205-211
    [41]B. Tazi, O. Savadogo. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion, silicotungstic acid and thiophene[J]. Electrochemical Acta.,2000,45(24): 4329-4339
    [42]Savadogo O. Emerging membranes for electrochemical systems:(I)solid polymer electrolyte membranes for fuel cell systems[J]. J. New Material for Electrochem. Systems, 1998,1:47-66
    [43]Beattie P D, Orfino F P, Basura V I, et al.. Ionic conductivity of proton exchange membranes[J], J.Electroanal.Chem.,2001,503:45-56
    [44]Savinell R F, Litt M H. Proton conducting solid polymer electrolytes prepared by direct acid casting[J]. Fuel Cells,2003,2:101-105
    [45]钮振强.有机/无机质子交换复合膜的制备与性能研究[D].大连.大连理工大学.2007,10-11
    [46]邱新平,史萌等.一种聚偏氟乙烯枝接聚苯乙烯磺酸质子交换膜的制备方法[P].CN1330425,2002
    [47]李文琼,邱新平.聚偏氟乙烯溶液法接枝苯乙烯磺酸膜的结构与形貌研究[J].功能高分子材料,2004,17:452-456
    [48]Buchi F N, Gupta B, Haas O, et al.. Performance of differently cross-linked, partially fluorinated proton exchange membranes in polymer electrolyte fuel cells[J]. J.Electrochem.Soc.,1995,142:3044-3048
    [49]Dane A. Boysen, Calum R. I. Chisholm, et al.. Polymer Solid Acid Composite Membranes for Fuel-Cell Applications[J]. J. Electrochem. Soc.,2000,147(10):3610-3613
    [50]M. A. Hickner, H. Ghassemi, et al.. Alternative Polymer Systems for Proton Exchange Membranes (PEMs)[J]. Chem. Rev..2004.104:4587-4612
    [51]B.Bauer, D. J. Jones, et al.. Electrochemical characterisation of sulfonated polyetherketone membranes[J]. J. New Mat. Electrochem. Systems,2000,3:93-98
    [52]D. J. Jones, J. Roziere. Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications[J]. Journal of Membrane Science,2001,185(1): 41-58
    [53]曾繁涤,易回阳.磺化聚醚醚酮的合成和表征[J].高分子学报,1997,2:131-135
    [54]李磊,许莉,王宇新.磺化聚醚醚酮的制备及其阻醇和质子导电性能[J].高分子学报,2003,3:452-454
    [55]Lufrano F., Gatto I., Staiti P., et al.. Sulfonated polysulfone ionomer membranes for fuel cells[J]. Solid State Ionics,2001,145:47-51
    [56]Wang J. T., Wainright J. S., Savinell R. F., et al.. A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte[J]. J. Appl. Electrochem.,1996,26: 751-756
    [57]S. Wu, J. D. Jorgensen, et al.. Effects of sulphonic and phosphonic acrylic monomers on the crosslinking of acrylic latexes with cycloaliphatic epoxide[J]. Progress in Organic Coatings,1999,36(1-2):21-33
    [58]H. R. Allock, K. B. Visscher, et al.. Preparation and characterization of poly (organophosphazene) blends[J]. Chemistry of Materials,1992,4:1182-1187
    [59]R. Wycisk, P. N. Pintauro. Sulfonated polyphosphazene ion-exchange membranes[J]. Journal of Membrane Science,1996,119(1):155-160
    [60]Q Guo, P. N. Pintauro, et al.. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes[J]. Journal of Membrane Science,1999,154(2):175-181
    [61]M.X.Ding and J.K.Stille. Syntheses of polyquinolines containing diphenylphosphine ligands as heterogeneous supports for homogeneous catalysts[J]. Macromolecules, 1983(16):839-843
    [62]Genies C., Mercier R., Sillion B.. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer,2001,42(12):5097-5105
    [63]Gebel G, Aldebert P, Pineri M. Swelling study of perfluorosulphonated ionomer membranes[J]. Polymer,1993,34:333-339
    [64]Genies C., Mercier R., Sillion B.. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes[J]. Polymer,2001,42(2):359-373
    [65]Park Y S, Yamazaki Y. Low methanol permeable and high proton-conducting Nafion/calcium phosphate composite membrane for DMFC[J]. Solid State Ionics,2005, 176:1079-1089
    [66]黄红良,李伟善,吴颖民等.质子交换膜甲醇渗透的循环伏安研究[J].电池,2005,35(6): 453-454
    [67]陈建新,吴洪.分离膜透过系数的测量[J].仪器仪表学报,2002,23(3):58-59
    [68]吴洪.直接甲醇燃料电池用阻醇质子导电膜的研究[D].天津.天津大学.2000,42-43
    [69]丁志杰,陈君华等.酸的种类和浓度对SBA-15有序介孔分子筛结构和形貌的影响[J].硅酸盐学报,2008,36(7):978-987
    [70]虞鑫海,胡志强.新型聚酰亚胺的合成及其性能[J].绝缘材料通讯,2000,6:10-12
    [71]祁喜旺,陈翠仙,蒋维钧.一种新型的膜材料——聚酸亚胺[J].化工进展,1995,5:24-28
    [72]R. W. Kopitzke, C. A. Linkous, et al.. Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes[J]. J. Electrochem. Soc.,2000,147(5):1677-1681
    [73]窦志宇.新型燃料电池用质子交换膜的合成和性能研究[D].长春.吉林大学.2006,73-74
    [74]黄宁.PVDF氟碳涂料的红外谱图解析及其组分分析[J].涂料工业,2003,33(12):45-48
    [75]宋文生,李磊,王宇新等.磺化聚醚醚酮与聚砜共混膜导电与传质特性研究[J].膜科学与技术,2004,24(3):15-19
    [76]Swier S, Ramani V, Fenton J M, et al. Polymer blends based on sulfonated poly (ether ketone ketone) and poly (ether sulfone) as proton exchange membranes for fuel cells[J]. J Membr Sci,2005,256:122-133