外生菌根真菌提高油松抗旱性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用纯培养技术筛选出一株抗旱性强的外生菌根真菌,测定其在不同干旱胁迫下菌丝体分泌植物激素的差异;采用盆栽法接种油松苗,研究聚乙二醇-6000(PEG-6000)模拟干旱胁迫下,菌根苗和非菌根苗生长和生理生化指标的变化,分析干旱胁迫下,菌根真菌、菌根苗、非菌根苗蛋白表达差异,揭示外生菌根真菌提高油松苗的抗旱机制。得出以下主要结论:
     1.抗旱菌株的筛选
     对纯培养条件下3种外生菌根真菌生长特性研究表明,干旱胁迫只改变了外生菌根真菌生长速度和生物量积累,对增长模式没有影响。轻度干旱胁迫(10% PEG浓度)对3种外生菌根真菌有一定的促生长作用,随着干旱胁迫的加剧(15%~35% PEG浓度),3种外生菌根真菌的抑菌率都增大,抗旱性由强到弱依次为灰环粘盖牛肝菌(Suillus laricinus(Berk.in Hook.)O.Kumtze)>绒粘盖牛肝菌(Suillus tomentosus(Kauff.)Sing.Snell & Dick)>灰鹅膏菌(Aminita vaginata(Bull.:Fr.)Vitt.)。
     2. PEG胁迫下抗旱菌株产生植物激素的差异
     不同PEG浓度干旱胁迫下,液体培养灰环粘盖牛肝菌,发现当PEG胁迫浓度由0%增加到25%时,菌丝体中赤霉素含量由26.53μg/g递减到0μg/g,生长素含量由180.98μg/g递减到0μg/g。15% PEG浓度下脱落酸积累最多,为184.36μg/g,当干旱胁迫超过其忍耐程度(20% PEG浓度),抑制脱落酸的积累。
     3.外生菌根真菌对油松的接种效应
     正常水分下,接种菌根真菌(灰环粘盖牛肝菌)促进油松苗高、茎粗和根长,提高地上干重、地下干重和根冠比(P<0.05),菌根苗比非菌根苗分别提高了26.36%、8.47%、24.83%、90.91%、175%和36.84%,二者相对含水量差异不显著(P>0.05)。菌根依赖性(MD)大于200%,属于中等依赖性。菌根苗和非菌根苗生理指标无显著性差异(P>0.05)。
     4. PEG胁迫下外生菌根真菌对油松抗氧化酶活性的影响
     PEG模拟干旱胁迫下测定菌根苗和非菌根苗根系SOD和CAT活性,研究表明:随着胁迫时间的延长,菌根苗和非菌根苗SOD活性、30% PEG浓度下的CAT活性呈“降低-升高-降低”的变化趋势;0%、10%和20%浓度下CAT活性呈“升高-降低”的变化趋势。相同PEG浓度胁迫1、2和4 h,菌根苗SOD活性显著高于非菌根苗活性(P<0.05);胁迫8和12 h差异不显著(P>0.05)。胁迫2 h,20% PEG浓度下CAT活性增幅(胁迫1 h相比)最大,菌根苗增加了3.20倍,非菌根苗增加了2.84倍,菌根苗酶活性比非菌根苗高69.50%。
     5. PEG胁迫下外生菌根真菌对油松丙二醛(MDA)含量及质膜透性的影响
     PEG模拟干旱胁迫下测定菌根苗和非菌根苗根系MDA含量和根系电导率,研究表明:随着胁迫时间的延长,菌根苗和非菌根苗MDA含量逐渐增加,根系电导率呈波动性变化。相同PEG浓度胁迫1 h,菌根苗和非菌根苗MDA含量无显著性差异(P>0.05),胁迫2~12 h,菌根苗MDA含量显著低于非菌根苗(P<0.05)。30% PEG浓度胁迫12 h MDA达最大值,非菌根苗比菌根苗高38.13%。相同PEG浓度胁迫相同的时间,非菌根苗电导率均大于菌根苗的电导率。
     6. PEG胁迫下外生菌根真菌对油松脯氨酸(Pro)含量的影响
     PEG模拟干旱胁迫下测定菌根苗和非菌根苗根系Pro含量,研究表明:随着胁迫时间的延长,菌根苗和非菌根苗Pro含量呈“升高-降低”的变化趋势。相同PEG浓度胁迫1~2 h,菌根苗Pro含量高于非菌根苗;胁迫4~12 h,菌根苗Pro含量低于非菌根苗。30% PEG浓度胁迫4 h,非菌根苗脯氨酸含量高达85.60μg/g,比菌根苗高50.12%。
     7. PEG胁迫下外生菌根真菌对油松萎蔫率和抗旱级别的影响
     PEG模拟干旱胁迫下测定菌根苗和非菌根苗根系萎蔫率和形态抗旱级别,研究表明:随着PEG浓度的增加和胁迫时间的延长,菌根苗和非菌根苗叶片萎蔫,植株倒伏,萎蔫率和抗旱级别增大。菌根苗萎蔫速度慢于非菌根苗,程度也较轻。综合分析表明,接种菌根真菌的油松苗抗旱性比未接种强。
     8. PEG胁迫下菌根真菌、油松苗根系蛋白表达差异
     由蛋白电泳图谱可知,干旱胁迫下,菌根真菌、菌根苗和非菌根苗蛋白条带不尽相同,蛋白的表达量胁迫的强度有关。真菌菌丝体表达了分子量为66.2 KDa和28.4 KDa的蛋白,随着PEG浓度升高,蛋白表达量增多,但30% PEG浓度下没有蛋白表达。菌根苗比非菌根苗多表达了分子量为66.2 KDa的蛋白,少表达13.0 KDa的蛋白,同时提高了97.5 KDa蛋白的表达量。14.5 KDa~20.1 KDa蛋白在菌根苗和非菌根苗中无明显变化。
In this paper, a drought-resistant ectomycorrhizal fungi was selected in pure culture, and its phytohormone excretion in mycelium was measured under different drought stress. Pot culture experiments were carried out to study the inoculation effects with the ECMF on the growth and some physio-biochemical indexes of Pinus tabulaeformis Carr.seedlings under drought stress using treatments of different PEG 6000 concentrations in 1/2 Hoagland liquid. In addition, protein expression in ECMF, mycorrhizal plants and non-mycorrhizal plants under different drought stress was analysed. Mechanism of the promotion of drought resistance of Pinus tabulaeformis Carr. with ECMF was revealed. The results were as follows:
     1. Selection for a drought-resistant ECMF
     The growth characteristics of three kinds of ECMF under PEG stress in pure culture were studied, and the results showed that the growth models of the three ECMF were not affected by PEG stress, but the growth rates and biomass changed. Lower PEG concentration(10%) could stimulate the growth of them. Inhibitory efficiency became higher with the increasing PEG concentration(15%~35%). Their resistance to drought were: Suillus laricinus(Berk.in Hook.)O.Kumtze>Suillus tomentosus(Kauff.)Sing.Snell & Dick>Aminita vaginata(Bull.:Fr.)Vitt.
     2. Phytohormone excretion under PEG stress
     Suillus laricinus was cultured in MMN liquid stressed with different concentrations of PEG, and the results showed that with the increasing drought stress(0%~25%), the content of gibberellin(GA) and auxin(IAA) in mycelium reduced from 26.53μg/g to 0μg/g and 180.98μg/g to 0μg/g. S. laricinus accumulated the most abscisic acid(ABA)at 15% PEG concentration, 184.36μg/g; when drought stress was beyond the tolerance of S. laricinus(20% PEG concentration), it inhibited the accumulation of abscisic acid(ABA).
     3. Inoculation effects on Pinus tabulaeformis Carr.
     S. laricinus significantly promoted the plant hight, stem diamter, plant dry weight and root top rate of P. tabulaeformis, which in mycorrhizal plants was higher by 26.36%, 8.47%, 103.85% and 36.84% than that in non-mycorrhizal plants. And there was no significant difference between the content of relative water. The mycorrhizal dependence was more than 200%, which belonged to medium dependence.There was no significant difference between physiological index of mycorrhizal and non-mycorrhizal plants in normal.
    
     4. Effects of ECMF on antioxidant enzyme of P. tabulaeformis under PEG stress SOD and CAT activitiesof mycorrhizal and non-mycorrhizal plants under PEG stress were determined, and the results showed that with increasing duration, SOD activities of mycorrhizal and non-mycorrhizal plants, together with CAT activities at 30% PEG concentration presented descend-ascend-descend trend; CAT activities of other treatments presented ascend-descend trend. SOD activities in mycorrhizal plants were significantly higher than that in non-mycorrhizal plants at 1, 2 and 4 hour stress; and there was no significant difference between them at 8 and 12 hour stress.The highest CAT activities occurred at 2 h of 20% PEG concentration, which in mycorrhizal plants(increased 3.20 times) were higher by 69.50% than that in non-mycorrhizal plants(increased 2.84 times).
     5.Effects of ECMF on MDA content and membrane permeability of P. tabulaeformis under PEG stress
     MDA content and membrane permeability of mycorrhizal and non-mycorrhizal plants under PEG stress were determined, and the results showed that MDA content increased by degree with increasing PEG concentration and duration. Root conductivity fluctuated. MDA content between mycorrhizal and non-mycorrhizal plants had no significant difference at 1 hour stress, but it was significantly lower in mycorrhizal plants than that in non-mycorrhizal plants from 2~12 h. MDA content reached the summit at 12 h of 30% PEG concentraiton, and the content in non-mycorrhizal plants were higher by 38.13% than that in mycorrhizal plants. Relative conductivity of non-mycorrhizal plants was higher than that in mycorrhizal plants.
     6. Effects of ECMF on Pro content of P. tabulaeformis under PEG stress
     Pro content of mycorrhizal and non-mycorrhizal plants under PEG stress was determined, and the results showed that Pro content presented ascend-descend trend with increasing duration. Pro content in mycorrhizal plants was higher than that in non-mycorrhizal plants from 1~2 h, and it was opposite from 4~12 h. Pro content achieved the peak at 4 h, which in non-mycorrhizal plants at 30% PEG concentration (85.60μg/g) was higher by 50.12% than that in mycorrhizal plants.
     7. Effects of ECMF on wilted coefficient and drought-resistant level of P. tabulaeformis under PEG stress
     The wilted coefficient and drought-resistant level of mycorrhizal and non-mycorrhizal plants under PEG stress were determined, and the results showed that wilted coefficient and drought-resistant level increased with increasing PEG concentration and duration. Mycorrhizal plants reached the same damaging degree later than non-mycorrhizal plants. Or mycorrhizal plants appeared the same damaging degree under greater drought stress compared with non-mycorrhizal plants. Non-mycorrhizal plants had a faster and more serious wilting than mycorrhizal plants. In conclusion, in enhanced drought resistance of P. tabulaeformis after inoculating with ECMF.
     8. Protein expression of ECMF and P. tabulaeformis under PEG stress
     From the SDS-PAGE electrophoretogram, it was observed that ECMF, mycorrhizal plants and non-mycorrhizal plants had different protein bands under drought stress. Protein expression was related to drought strength. More protein(66.2 KDa and 28.4 KDa)was expressed with increasing PEG concentration in mycelium, and no protein was expressed at 30% PEG concentration. Compared with non-mycorrhizal plants, mycorrhizal plants increased the expression of 97.5 KDa protein, besides expressed a more 66.2 KDa protein, and not expressed 13.0 KDa protein. There was no significant difference for protein(14.5 KDa~20.1 KDa)between mycorrhizal and non-mycorrhizal plants.
引文
毕银丽,李晓林,丁保健. 2003.水分胁迫条件下接种菌根对玉米抗旱性的影响.干旱地区农业研究, 21(2): 7-12.
    陈辉,唐明. 1995.外生菌根真菌对杨树抗溃疡病的影响.植物病理学报, 26: 370.
    高俊凤, 2000.植物生理学实验技术.西安:世界图书出版社.
    耿春女,李培军,陈素华,程云,张海荣,李雪华,许华夏,张春桂,韩桂云,刘微娜. 2007.菌根生物修复技术在沈抚污水灌区的应用前景.环境污染治理技术设备, 3(7): 51-56.
    弓明钦,陈应龙,仲崇禄. 1997.菌根研究及应用.北京:中国林业出版社.
    弓明钦,王凤珍,陈羽,陈应龙. 2000.西南桦对菌根的依赖性及其接种效应研究.林业科学研究, 13(1): 8-14.
    郭秀珍,毕国昌. 1989.林木菌根及应用技术.北京:中国林业出版社: 1-305.
    郭学武,汪国轮,龚建华,肖冬光. 2008.三种鹅膏菌培养条件及所产肽类毒素的比较研究.菌物学报, 27(5): 745-756.
    韩秀丽,贾桂霞,牛颖. 2006.外生菌根提高树木抗旱性机理的研究进展.水土保持研究, 13(5): 42-44.
    黄诚梅,毕黎明,杨丽涛,李杨瑞. 2007.聚乙二醇胁迫对甘蔗伸长期间叶中脯氨酸积累及其代谢关键酶活性的影响.植物生理学通讯, 43(1): 77-80.
    黄艺,黄志基,范玲,赵曦. 2006.铆钉菇对重金属的耐性及其对油松分泌TOC的影响.农业环境科学学报, 25(4): 875-879.
    黄艺,杨青,敖晓兰. 2008.外生菌根真菌对五氯酚的耐受性及生理响应.环境科学学报, 28(10): 2078-2083.
    蒋明义,郭少川. 1996.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯, 32(2): 144-150.
    康俊梅,杨青川,樊奋成. 2005.干旱对苜蓿叶片可溶性蛋白的影响.草地学报, 13(3): 199-202.
    孔繁翔,刘营,王连生,沈萍萍,周崇莲. 1999.酸沉降对马尾松菌根共生蛋白及营养关系影响.环境科学, 20(6): 1-5.
    李报,孙菲菲,胡海洲,贾会珍,张文胜,李霞. 2008.进口国产PEG对拟南芥种子萌发和幼苗主根生长影响的比较.中国生态农业学报, 16(4): 1070-1072.
    李建华. 2007.油松山地育苗技术.山西林业, 5: 22-32.
    李晓林,冯固. 2001.丛枝菌根生态生理.北京:华文出版社: 172-178.
    李永春,孟凡荣,王潇,陈雷,任江萍,牛洪斌,李磊,尹钧. 2008.水分胁迫条件下“洛旱2号”小麦根系的基因表达谱.作物学报, 34(12): 2126-2133.
    李玉萍,王蕤,周银莲. 1988.树木菌根真菌美味红菇内源激素的提取及鉴定.菌物学报, 7(4): 239-244.
    梁宇,郭良栋,马克平. 2002.菌根真菌在生态系统中的作用.植物生态学报, 26(6): 739-745.
    刘娥娥,汪沛洪,郭振飞. 2001.植物的干旱诱导蛋白.植物生理学通讯, 37(2): 155-159.
    刘润进,陈应龙. 2007.菌根学.北京:科学技术出版社.
    陆耀东,赵鸿杰,田雪琴,薛克娜,吴小英. 2007. 10种绿化苗木对VA菌根的依赖性及其接种效应.热带亚热带植物学报, 15(3): 237-243.
    吕全,雷增普. 2000.外生菌根提高板栗苗木抗旱性能及其机理的研究.林业科学研究, 13(3): 249-256.
    马小龙,刘颖慧,袁祖丽,石云素,宋燕春,王天宇,黎裕. 2009.玉米蔗糖转运蛋白基因ZmERD6 cDNA的克隆逆境条件下的表达.作物学报, 35(8): 1410-1417.
    宋勇春,冯固,李小林. 2003.不同磷源对红三叶草根际和菌根际磷酸酶活性的影响.应用生态学报, 14(5): 781-784.
    孙存华,杜伟,徐新娜,陈湘玲,张亚红. 2009.干旱胁迫对藜叶片干旱诱导蛋白的影响.干旱区研究, 26(3): 372-376.
    孙国荣,彭永臻,阎秀峰. 2003.干旱胁迫对白桦实生幼苗叶片蛋白质的影响.林业科学, 39(4): 151-154.
    孙群,胡景江. 2006.植物生理学研究技术.杨凌:西北农林科技大学出版社.
    孙云,李柱军. 2008.麻栎菌根化幼苗对水分胁迫的响应.现代农业科学, 15(7): 20-22.
    王洁,李敏,张宜辉,杨盛昌. 2008. HPLC测定木榄繁殖器官内源ABA和GA3含量.厦门大学学报(自然科学版), 47(5): 752-756.
    王有智,黄亦存. 1997.四种外生菌根真菌产生植物激素的研究.微生物学通报, 24(2) :72-74.
    魏琴,赖家业,周锦霞,戎芳,徐莺,唐琳,陈放. 2004.干旱胁迫下麻疯树毒蛋白的Western杂交分析.北京林业大学学报, 26(5): 26-30.
    魏媛,张金池,尹晓阳,杨萍. 2007.华山松菌根化幼苗的抗旱特性.南京林业大学学报, 31(4): 69-72.
    吴炳云. 1991.菌根水分胁迫.北京林业大学学报, 13(4): 95-104.
    吴炳云. 1991.水分胁迫下外生菌根对油松容器苗的影响.北京林业大学学报, 13(增刊): 89-93.
    吴强盛,夏仁学. 2004. VA菌根植物水分代谢的关系.中国农学通报, 20(1): 188-192.
    吴小芹,马磊. 2008.外生菌根真菌产生植物激素差异及其NL-895杨生长的关系.林业科学, 44(7): 43-49.
    徐超,吴小芹. 2009.菌根化马尾松对干旱胁迫的响应及其内源多胺的变化.西北植物学报, 29(2): 0296-0301.
    许美玲,赵春燕,朱教君,孙军德,石星群. 2006.主要环境因子对两株松树外生菌根真菌生长的影响. 土壤通报, 37(3): 566-568.
    许学明,岳凤荣. 1998. VA菌根真菌纯系增殖培养条件研究初报.山东农业大学学报, 6(2): 218-223.
    薛立,薛晔,任向荣,史小玲,冯慧芳. 2009. PEG模拟干旱条件下尾叶桉和枫香苗的生理响应.生态环境学报, 18(2): 614-620.
    薛小平,张深,李海涛,陈吉,黄建国. 2008.磷对外生菌根真菌松乳菇和双色蜡蘑草酸、氢离子和磷酸酶分泌的影响.菌物学报, 27(2): 193-200.
    闫明,钟章成. 2007.铝胁迫对感染丛枝菌根真菌的樟树幼苗生长的影响.林业科学, 43(4): 59-65.
    闫伟,韩秀丽,白淑兰,邵东华. 2006.林业科学.虎榛子几种菌根苗抗旱机制的研究. 42(12): 73-76.
    尹晓阳,朱忠荣. 2008.马尾松菌根化苗水分胁迫生理耐旱性研究.林业资源管理, 3: 63-67.
    于富强,刘培贵. 2002.外生菌根研究及应用的回顾展望.生态学报, 22(12): 2217-2226.
    张行勇. 2007-1-5.黄土高原植被建设:适地适树适地适林.科学时报.
    张立军,樊金娟,阮燕晔,关义新. 2004.聚乙二醇在植物渗透胁迫生理研究中的应用.植物生理学通讯, 40(3): 361-364.
    张茹琴. 2008.秦岭外生菌根真菌多样性及其提高油松抗猝倒病的机制. [博士学位论文].杨凌:西北农林科技大学.
    张玉秀,徐进,王校,柴团耀. 2007.植物抗旱和耐重金属基因工程研究进展.应用生态学报, 18(7): 1631-1639.
    赵强. 2008.油松幼苗活性增强技术研究综述.科技情报开发经济, 18(22):108-110.
    赵士杰,李树林. 2004. VA菌根真菌对旱作春小麦抗旱性的影响.内蒙古农业大学学报, 25(4): 43-46.
    赵天宏,沈秀瑛,杨德光,马秀芳. 2002.水分胁迫对不同抗旱性玉米幼苗叶片蛋白质的影响.沈阳农业大学学报, 33(6): 408-410.
    赵志鹏,郭秀珍. 1989.外生菌根真菌纯培养的生态学研究.林业科学研究, 2(2): 136-141.
    赵志鹏,郭秀珍,张良谱. 1993.外生菌根菌剂在油松育苗造林中的应用.林业科学, (5): 402-406.
    仲凯,刘红霞. 2008.菌根研究的新特点及应用.生态科学, 27(3): 169-178.
    周建朝,韩晓日. 2004.甜菜根际磷酸酶的研究现状展望.中国糖料, (1): 35-38.
    周蕾,魏琦超,高峰. 2006.细胞分裂素在果实及种子发育中的作用.植物生理学通讯, 42(3): 549-553.
    周瑞莲,王刚. 1997.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用.草业学报, 6(4): 39-43.
    朱教君,康宏樟,李智辉. 2006.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响.北京林业大学学报, 28(2): 57-63.
    朱教君,许美玲,康宏樟,徐慧,闫军杰. 2005.温度、pH及干旱胁迫对沙地樟子松外生菌根菌生长影响.生态学杂志, 24(12): 1375-1379.
    Ahonen-Jonnarth U. 2000. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals. [Doctoral Thesis]. Swedish University of Agricultural Sciences. SLU Service/Repro, Uppsala. ISBN 91-576-5864-1.
    Alguacil M M, Hernández J A, Caravaca F, Portillo B, Roldán A. 2003. Antioxidant enzyme activities in shoots from afforestated in a degraded semi-arid soil. Physiol Plant, 118: 562-570.
    Allen C D, Macalady A K, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D D, Hogg E H, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J H, Allard G, Running S W, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Mangement, 259: 660-684.
    Allen M F. 1991. The ecology of mycorrhizae. New York: Cambridge University Press. Andre S, Galiana A, Roux C L, Prin Y, Neyra M, Duponnois R. 2005. Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth. Mycorrhiza, 15: 357-364.
    Arocena J M, Glowa K R, Massicotte H B, Lavkulich L. 1999. Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in Ae horizon of Luvisol. Canadian Journal of Soil Science, 79(1): 25-35.
    Arocena J M, Gowa K R. 2000. Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. Forest Ecology and Management, 133: 61-70.
    Beniwal R S, Langenfeld-Heyser R, Polle A. 2010. Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and ExperimentalBotany, doi:10.1016/j.envexpbot.2010.02.005.
    Berg L V, Zeng Y J. 2006. Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000. South African Journal of Botany, 72: 284-286.
    Bogeat-Triboulot M B, Bartoli F, Garbaye J, Marmeisse R, Tagu D. 2004. Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant and soil, 267: 213-223.
    Brenner M L, Chezkh N. 1995. The role of hormones in photosynehate partitioning and seed filling. In: Davies P J. Plant Hormones. The Netherlands: Kluwer Academic Publishers, 649-670.
    Brown J H, Whitham T G, Morgan Ernest S K, Catherine C A. 2001. Complex species interactions and the dynamics of ecological systems: long-term experiments. Science, 293: 643-664.
    Caravaca F, Alguacil M M, Hernandez J A, Roldan A. 2005. Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Science, 169(1): 191-197.
    Caravaca F, Barea J M, Figueroa D, Roldan A. 2002. Assessing the effectiveness of inoculation with mycorrhizal fungi and soil compost addition for reafforestation with Olea europaea subsp. sylvestris through changes in soil biological and physical parameters. Applied Soil Ecology, 20: 107-118.
    Chaves M M, Maroco J P, Pereira J S. 2003. Understanding plant responses to drought-from genes to the whole plant. Function of Plant Biology, 30: 239-264.
    Christmann A, Hoffmann T, Teplova I, Grill E, Muller A. 2005. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiology, 137(1): 209-219.
    Courty P E, Buee M, Diedhiou A G, Frey-Klett P, Tacon F L, Rineau F, Turpault M P, Uroz S, Garbaye J. 2010. The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biology & Biochemistry, 42: 679-698.
    Dahlberg A. 2001. Community ecology of ectomycorrhizal fungi: an advancing interdiciplinary field. New Phytologist, 150: 555-562.
    di Pietro M, Churin J L, Garbaye J. 2007. Differential ability of ectomycorrhizas to survive drying. Mycorrhiza, 17: 547-550.
    Dominik T. 1959. Synopsis of a new classification of the ectotrophic mycorrhizae established on morphological and anatomical charateristics. Mycopathologia, 11(4): 359-367.
    Donnelly P K, Fletcher J S. 1995. PCB metabolism by ectomycorrhizal fungi. Bulletin of Enviromenta Contamination and Toxicology, 54: 507-513.
    Duan X R, Neuman D S, Reiber J M, Green C D, Saxton A M, Auge R M. 1996. Mycorrhizal influence on hydmnlic and bormonal factors implicated in the control of stomatal conductance during drought. Journal of Experimental Botany, 47(303): 1541-1550.
    Duponnois R, Founoune H, Masse D, Pontanier R. 2005. Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years planation. Forest Ecology and Management, 207: 351-362.
    Finlay R D, Ek H, Odham G, Soderstrom B. 1998. Mycelial uptake translocation and assimilation of nitrogen from 15N-labeled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytologist, 110: 59-66.
    Fischer U, Polle A. 2010. Populus responses to abiotic stress. In: Jansson S, Bhalerao R, Groover A.Genetics and Genomics of Populus. Spring-Verlag, Berlin, 225-246.
    Frank A B. 1885. Uber die auf Wurzel synbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze. Ber Deutch Bot Ges, 3: 128-145.
    Gast C H, Jansen E, Bierling J. 1998. Heavy metals in mushroom and their relationships with soil charaterstics. Chemosphere, 17(4): 789-799.
    Giri B, Kapoor R, Mukerji K G. 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculi formis. Biology and Fertility of Soils, 38: 170-175.
    Gleason F H, Midgley D J, Letcher P M, McGee P A. 2006. Can soil Chytridiomycota survive and grow in different osmotic potentials. Mycological Research , 110: 869-875.
    Harley J L. 1959. The significance of mycorrhiza. Mycological Research, 92: 129-139.
    He X H, Horwath W R, Zasoski R J, Aanderud Z, Bledsoe C S. 2007. Nitrogen sink strength of ectomycorrhizal morphotypes of Quercus douglasii, Q. garryana, and Q. agrifolia seedlings grown in a northern California oak woodland. Mycorrhiza, 18(1): 34-41.
    Hoagland D R, Arnon D I. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Ciucular, 347: 1-32.
    Hobbie E A, Weber N S, Trappe J M. 2001. Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytologist, 150: 601-610.
    Jongmans A G, Breemen N , Lundstrom U, Hees P A W, Finlay R D, Srinivasan M, Unestam T, Gesler R, Melkerud P A, Olsson M. 1997. Rock-eating fungi. Nature, 389: 682-683.
    Langenfeld-Heyser R, Gao J, Ducic T, Tachd P, Luc F, Fritze, Gafura, Pollea. 2007. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus×canescens. Mycorrhiza, 17: 121-131.
    Liu R J, Li M, Meng X X, Liu X, Li X L. 2000. Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystema, 19(1): 91-96.
    Luo Z B, Janz D, Jiang X N, Gobel C, Wildhagen H, Tan Y P, Rennenberg H, Feussner I, Polle A. 2009. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiology, 151: 1902-1917.
    Machado-Neto J G, Machado J O, Barreto M, Palladini L A, Matallo M B. 1994. Effect of benomyl on the formation of mycorrhiza in roots of tomato(Lycopersicon esculentum Mill.)seedlings. Bulletin of Enviromental Contamination and Toxicology, 52: 864-870.
    Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159: 89-102. Muhsin T M, Zwiazek J J. 2002. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytologist, 153: 153-158.
    Ouziad F, Hildebrandt U, Schmelzer E, Bothe H. 2005. Differential gene expression in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. Journal of Plant Physiology, 162: 634-649.
    Peterson R L, Massicotte H B, Melville L H. 2004. Mycorrhizas: anatomy and cell biology. Ottawa: NRC Research Press,CABI Publishing.
    Pfeffer P E, Bago B, Shachar-Hill Y. 2001. Exploring mycorrhizal function with NMR spectroscopy. New Phytologist, 150: 543-553.
    Phillips J M, Hayman D S. 1970. Improved procedures for clearing and staining parasitic andvesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158-161.
    Plamboeck A H, Dawson T E, Egerton-Warburton L M, North M, Bruns T D, Querejeta J I. 2007. Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza, 17: 439-447.
    Polle A, Altman A, Jiang X N. 2006. Towards genetic engineering for drought tolerance in trees. In: Fladung M, Ewald D. Tree Transgenesis: Recent Developments. Spring-Verlag, Berlin/Heidelberg, 275-297.
    Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano J M. 2007. A gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Enviromental and Experimental Botany, 60: 251-256.
    Porcel R, Barea J M, Ruiz-Lozano J M. 2003. Antioxidant activities in mycorrhizal soybean plants and their possible relationship to the process of nodule senescence. New Phytologist, 157: 135-143.
    Porcel R, Ruiz-Lozano J M. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjectecd to drought stress. Journal of Experimental Botany, 55: 1743-1750.
    Pritsch K, Jean-Charles M, Francois B. 2000. Identification and differentiation of mycorrhizal isolates of black alder by sequence analysis of the ITS region. Mycorrhiza, 10(2): 87-93.
    Querejeta J I, Egerton-Warburton L M, Allen M F. 2003. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia, 134: 55-64.
    Reid C P P. 1978. Mycorrhizae and water stress. In: Riedacker A. Root Physiology and Symbiosis. New York: Nancy: 392-408.
    Rabie G H. 2005. Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. African Journal of Biotechnology, 4(44): 332-345.
    Read D J. 1991. Plant-microbe mutualism and community structure. In: Ernst-Detlsf S, Mooney A. Biodiversity and Ecosystem Function. New York: Springer Verlag Publish, 181-209
    Roldan A, Diaz-Vivancos P, Hernandez J A, Carrasco L, Caravaca F. 2008. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. Journal of Plant Physiology, 165: 715-722.
    Ruiz-Lozano J. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. Mycorrhiza, 13: 309-317.
    Ruiz-Sanchez M, Aroca R, Munoz Y, Polon R, Ruiz-Lozano J. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, doi:10.1016/j.jplph.2010.01.018.
    Sarand I, Timonen S, Nurmiaho-Lassila E L, Koivula T, Haahtela K, Romantschuk M. 1998. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in the Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiology Ecology, 27: 115-126.
    Setala H, Kulmala P, Mikola J, Markkola A M. 1999. Influence of ectomycorrhiza on the structure of detrital food webs in pine rhizosphere. Oikos, 87: 113-122. Slatyer R O. 1987. Plant-water relationships. London Academic.
    Smith S E, Gianinazzi-Pearson V. 1988. Physiological interactions between symbionts invesicular-arbuscular mycorrhizal plants. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 221-244.
    Smith S E, Read D J. 1997. Mycorrhizal symbiosis. New York: Academic. Takeshi T, Ryota K, Kazuyolii F. 2008. Plant growth and nutrition in pine(Pinus thunbergii)seedings and dehyclrogenase and phosphaase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conalitions. Soil Biology & Biochemistry, 40(5):1235-1243.
    Tang M, Sheng M, Chen H, Zhang F F. 2009. In vitro salinity resistance of three ectomycorrhizal fungi. Soil Biology & Biochemistry, 41: 948-953.
    Tsavkelova E A, Bomke C, Netrusov A I, Weiner J, Tudzynski B. 2008. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genetics and Biology, 45: 1393-1403.
    Turnau K, Pryzybylowics W J, Mesjasz P J. 2001. Heavy metal distribution in Suillus luteus mycorrhizas-as revealed by micro-PIXE analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 181(1): 649-658.
    Verslues P E , Bray E A. 2004. LWR 1 and LWR 2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiology Preview, 136(1): 2831-2842.
    Verslues P E , Bray E A. 2006. Role of abscisic acid(ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany, 57(1): 201-212.
    Wallander H, Nylund J E, Sundberg B. 1992. Ectomycorrhiza and nitrogen effects on root IAA: results contrary to current theory. Mycorrhiza, 1(2): 91-92.
    Werner A, Zadworny M, Idzikowska K. 2002. Interaction between Laccaria laccata and Trichoderma virens in co-culture and in the rhizosphere of Pinus sylvestris grown in vitro. Mycorrhiza, 12: 139-145.
    Xu M L, Zhu J J, Kang H Z, Xu A H, Zhang J X, Li F Q. 2008. Optimum conditions for pure culture of major ectomycorrhizal fungi obtained from Pinus sylvestris var. mongolica plantations in southeastern Keerqin sandy lands, China. Journal of Forestry Research, 19(2): 113-118.
    Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Yoshiba Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56(417): 1975-1981.
    Zeppa S, Sisti D, Pierleoni R, Potenza L, Guescini M, Vallorani L, Stocchi V. 2005. Tilia platyphyllos Scop.-Tuber brumale Vittad. vs. T. platyphyllos Scop.–T. borchii Vittad. ectomycorrhizal systems: a comparsion of structural and functional traits. Plant Physiology and Biochemistry, 43: 709-716.
    Zhang X H, Lin A J, Chen B D, Wang Y S, Smith S E, Smith F A. 2006. Effects of Glomus mosseae on the toxicity of heavy metals to Vicia faba. Journal of Enviromental Sciences, 18(4): 721-726.
    Zheng W S, Fei Y H, Huang Y. 2009. Soluble protein and acid phosphatase exuded by ectomycorrhizal fungi and seedlings in response to excessive Cu and Cd. Journal of Enviromental Sciences, 21: 1667-1672.