外生菌根真菌提高杨树抗旱性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了PEG模拟干旱胁迫条件下,3种外生菌根真菌(Ectomycorrhizal fungi, ECMF)—褐黄牛肝菌(Boletus luridus,简称B.l)、粘盖牛肝菌(Suillus bovinus,简称S.b)和褐环粘盖牛肝菌(Suillus luteus,简称S.l)的菌丝生长及其营养代谢情况,并用抗旱性较强的褐黄牛肝菌(B.l)和粘盖牛肝菌(S.b)接种大青杨(Populus ussuriensis)幼苗,研究干旱胁迫下杨树菌根化苗的生理指标变化,以及叶绿素荧光特性的响应,探讨ECMF促进杨树抗旱的机制。得出以下主要结论:
     1.干旱胁迫对外生菌根真菌生长及其营养代谢的影响
     ①PEG模拟干旱胁迫下,3种ECMF菌落直径增长保持S生长模式,且较强干旱胁迫下(水势≤-0.49 MPa),各ECMF的指数期相对于对照(水势0 MPa)都滞后1-2 d。较弱干旱胁迫(水势≥-0.15 MPa)对3种ECMF生长没有影响,有的甚至有所促进,但对照相比没有显著差异(P>0.05);较强干旱胁迫(水势≤-0.49 MPa)对3种ECMF菌丝生长及生物量积累产生抑制,且差异显著(P<0.05)。方差分析表明,各干旱胁迫条件下,B.l和S.b的菌落生长趋势大致相同,没有显著菌间差异(P>0.05),较弱干旱胁迫下(水势≥-0.15 MPa),S.l菌落生长B.l和S.b间没有显著菌间差异(P>0.05),较强干旱胁迫下(水势≤-0.49 MPa),S.lB.l和S.b相比菌丝生长明显受到抑制,存在显著菌间差异(P<0.05)。
     ②干旱胁迫下,3种ECMF对营养元素的消耗趋势基本相同,较弱干旱胁迫(水势≥-0.15 MPa)对3种ECMF碳、氮、磷的消耗利用情况均无显著影响,较强干旱胁迫均显著降低了菌丝生长所需的碳、氮、磷的消耗速度;营养液中微量营养元素钾相对消耗量的变化碳、氮、磷的变化规律相反,3种ECMF消耗速度均随干旱胁迫的增强而显著升高。3种ECMF各营养元素的相对消耗量菌间差异显著(P<0.05),各个菌种间碳的消耗速度排序为:S.b>B.l>S.l,氮、磷、钾的消耗速度排序为:B.l>S.b>S.l
     ③干旱胁迫对3种ECMF的作用存在菌间差异,B.l和S.b对干旱胁迫的耐受性在生长和营养代谢方面都显著高于S.l菌,表现出较强的抗旱性。在选育抗旱菌种上B.l和S.b可作为优势菌种。
     2.干旱胁迫下外生菌根真菌对杨树生理指标的影响
     ①外生菌根真菌B.l和S.b接种杨树后显著促进了杨树株高和地径的生长,其中S.b对杨树的促生长作用大于B.l,比较两种ECMF对杨树的侵染率得出:侵染率的高低与促生长作用成正相关。
     ②干旱胁迫使杨树叶片的含水量下降,SOD活性、CAT活性、游离脯氨酸含量、MDA含量升高。但相同时间、相同胁迫水势下,接种B.l和S.b的杨树叶片含水量、SOD活性、CAT活性、游离脯氨酸含量均显著高于CK(未接种)(P<0.05),细胞膜脂质过氧化的产物MDA的含量显著低于CK(P<0.05)。接种菌根真菌增强了杨树的生理抗旱性,其中S.b对杨树抗旱性的增强作用显著优于B.l(P<0.05)。
     3.干旱胁迫下外生菌根真菌对杨树光合作用的影响
     ①干旱胁迫使杨树叶片的叶绿素含量下降,但相同时间、相同胁迫水势下,接种B.l和S.b的杨树叶片的叶绿素含量下降幅度要显著低于CK(P<0.05),从而保持了较高的吸光能力,进而提高了杨树抵抗干旱的能力。
     ②干旱胁迫使杨树的叶片的叶绿素荧光参数——可变荧光(Fv)、PSⅡ原初光能转化效率(Fv/Fm)、PSⅡ的潜在活性(Fv/Fo)显著下降,说明水分胁迫使杨树幼苗叶片PSⅡ反应中心受到伤害,抑制了光合作用原初反应过程。但相同时间、相同胁迫水势下,接种B.l和S.b的杨树叶片Fv、Fv/Fm、Fv/Fo的降幅显著低于CK(P<0.05),从而降低了水分胁迫对杨树幼苗叶片PSⅡ反应中心的伤害,保持了较强的光合能力,提高了杨树的抗旱性,其中,S.b对杨树抗旱性的增强作用显著优于B.l(P<0.05)。
     4.综合本实验结果,3种外生菌根真菌中,粘盖牛肝菌(Suillus bovinus)对大青杨抗旱作用最强。
In this paper, the growth and nutrition metabolism of three kinds of ECMF(Boletus luridus, Suillus bovinus, Suillus luteus) were studied under the drought stress which was formed by PEG. We inoculate B.l and S.b which were able to resistant drought esistance into Populus ussuriensis, then, the changing of physiological index and Chlorophyll fluorescence of the mycorhizal plants were studied under drought stress. Reveal the mechanism of ECMF promote drought resistance of their host. The major results were as follow:
     1. Effects of drought stress on the growth and nutrition metabolism of ECMF
     The diameter growth of three ECMF remain keeping S-Tape under drought stress which was formed by PEG, and exponential phase of every mycelial was postponed 1-2 days under stronger drought stress (the water potential≤-0.49 MPa), and there was no significant different between three kinds of ECMF and CK with weak drought stress(.P>0.05); Under stronger drought stress (the water potential≤-0.49 MPa), the Mycelial growth and biomass accumulation of three ECMF was inhibited with significant differences(P<0.05). Variance analysis showed that B.l and S.b were similar in the colony growth trends under the drought stress, which has no significant difference between strains (P> 0.05). The colony growth of S.l has no significant difference with B.l and S.b (P<0.05), under the less drought stress (water potential≥-0.15 MPa). The mycelial growth of S.l was strongly inhibited compared to B.l and S.b, and there are significant differences between strains (P<0.05)
     The consumption trends of nutrient were more or less the same under drought stress. there was no significant effects on the consumption of C, N, P under weak drought stress (the water potential≥-0.15 MPa), but under stronger drought stress, the consumption of macroelement for mycelia growth was decreased, on the contrary, the consumption of microelement K was significantly promoted with the increase of drought stress. The relative consumption nutrient of 3 each ECMF differed significantly between strains (P<0.05). The consumption rate of each species odered as follow:S.b>B.l>S.l. The consumption rate of nitrogen, phosphorus and potassium odered as follow:B.l>S.b>S.l.
     The effects of drought stress on the three ECMF was different, the tolerance to drought stress of B.l and S.b was higher than S.l in aspects of mycelial growth and nutrition metabolism, therefore, B.l and S.b can be used as a dominant species. B.l and S.b can be used as dominant species in breeding species with drought resistant.
     2. Effects of ECMF on the physiological index of P. ussuriensis under drought stress.
     The stem length and diameter of P. sussuriensis was significantly promoted after B.l and S.b was inoculated, and the effect of S.l was stronger than B.l. The infection rate was positive correlated with growth-promoting.
     The Leaf Water Content decreased, SOD, CAT activity, free Pro and MDA contents increased under drought stress. But in P. ussuriensis inoculated with B.I and S.b, Leaf Water Content, SOD, CAT activity, free Pro was significantly higher than CK (P<0.05), MDA content was significantly lower than CK (P<0.05), therefore, the drought resistance of P. ussuriensis was promoted, and the effect of S.l was stronger than B.l (P<0.05).
     3 ECMF the relative consumption of each nutrient was significant difference between strains (P<0.05), various species of carbon consumption rate between the order of:Sb> Bl> Sl, nitrogen, phosphorus and potassium consumption rate of the order of:Bl> Sb> Sl.
     3. Effects of ECMF on the photosynthesis of P. ussuriensis under drought stress
     Chlorophyll Content of P. ussuriensis decreased under drought stress, but in the same time and same water stress, the Decrease of Chlorophyll Content in P. ussuriensis inoculated ECMF was significantly lower than CK (P<0.05), thus a high absorption capacity was maintained and the drought resistance was promoted.
     Chlorophyll fluorescence parameters—Fv, Fv/Fm, Fv/Fo was significantly decreased under water stress, which showed that the PSⅡaction center in P. ussuriensis seedlings was taking damaged, thus the primary reaction of photosynthesis was inhibited, but in the same time and same water stress, the decrease of Fv, Fv/Fm, Fv/Fo in P. ussuriensis inoculated ECMF was significantly lower than CK (P<0.05), therefore the mischief of PSⅡwas decreased, the drought resistance was promoted, and the effect of S.l was stronger than B.l (P<0 .05).
     4. In a word, S.b was the most helpful fungi for P. ussuriensis to resistent drought stress in the 3 species of Ectomycorrhizal fungi.
引文
鲍士旦.2000.土壤农化分析.北京:中国农业出版社.
    陈辉,唐明.1995.外生菌根真菌对杨树抗溃疡病的影响.植物病理学报,1995,26:370.
    陈京,谈锋,李蓉涛.1994.甘薯苗期离体叶片对水分胁迫的适应能力.植物生理学通讯,30(4):269-271.
    陈培元,蒋永罗,李英,付左.1987.钾对小麦生长发育、抗早性和某些生理特性影响.作物学报,13(4):322-327.
    陈由强,朱锦懋,叶冰莹.2000.水分胁迫对芒果幼苗细胞活性氧伤害的影响.生命科学研究,4(1):60-64.
    曹昀,王国祥,张聃.2008.干旱对芦苇幼苗生长和叶绿素荧光的影响.干旱区地理,31(6):862-869.
    樊荣,白淑兰,刘勇,周晶,董智.2006.大青山外生菌根真菌资源生态研究.生态报,26(3):837-841.
    冯建灿,胡秀丽,毛训甲.2002.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究,20(4):14-18.
    付士磊,周永斌,何兴元,陈玮.2006.干旱胁迫对杨树光合生理指标的影响.应用生态学报,17(11):2016-2019.
    高俊凤.2000.植物生理学实验技术.西安:世界图书出版社.
    高祥斌,张秀省,蔡连捷,张敏.2009.聚乙二醇模拟干旱对白蜡苗生理指标的影响.辽宁林业科技,2:11-13.
    弓明钦,陈应龙,仲崇禄.1997.菌根研究及应用.北京:中国林业出版社.
    郭秀珍,毕国昌.1989.林木菌根及应用技术.北京:中国林业出版社.
    韩建国,潘全山,王培.2001.草坪草蒸散和抗旱性研究.草业学报,10(4):56-63.
    韩瑞宏,卢欣石,高桂娟,杨秀娟.2007.紫花苜蓿对干旱胁迫的光合生理响应.生态学报,27(12):5229-5237.
    黄昌勇.2000.土壤学.中国农业出版社.
    黄艺,陶澍,姜学艳,等.2002.过量铜对4种外生菌根真菌的生长、碳氮和铜积累的影响.微生物学报,42(6):737-744.
    黄少伟,谢维辉.2001.实用SAS编程林业试验数据分析.广州:华南理工大学出版社.
    黄建昌.1994.草莓对干旱的生理反应.果树科学,11(2):114-116.
    胡哲森,许长钦,傅瑞树.2000.锥栗幼苗对水分胁迫的生理响应及6-BA的作用.福建林学院学报,20(3):139-202.
    井春喜,张怀刚,师生波,张梅妞,李毅.2003.土壤水分胁迫对不同耐旱性春小麦品种叶片色素含量的影响.西北植物学报,23(5):811-814.
    雷增普,金均然,王昌温.1989.外生菌根真菌对植物根部病害病原菌拮抗作用的研究.林业科学,25(6):502-508.
    雷增普.1994.外生菌根树木抗旱的关系.土壤学报,31(增刊):156-163.
    李吉跃.1991.植物耐旱性及其机理.北京林业大学学报,92-97.
    李广敏,唐连顺,商振清.1994.渗透胁迫对玉米幼苗保护酶系统的影响及其抗旱性的关系.河北农 业大学学报,17(2):1-5.
    李德全,郭清福,张以勤.1993.冬小麦抗旱生理特性的研究.作物学报,19(2):125-132.
    李昆,曾觉民.1999.金沙江热合谷造林树种游离脯氨酸含量抗旱性的关系.林业科学研究,12(1):103-107.
    李志军,罗青红,伍维模,韩路.2009.干旱胁迫对胡杨和灰叶胡杨光合作用及叶绿素荧光特性的影响.干旱区研究,26(1):45-52.
    梁新华,许兴,徐兆桢,裘志新,时海娟.2001.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响.干旱地区农业研究,19(3):72-77.
    梁宇,郭良栋,马克平.2002.菌根真菌在生态系统中的作用.植物生态学报,26(6):739-754.
    梁军,张颖,贾秀贞,吕全,张星耀.2003.外生菌根菌对杨树生长及抗逆性指标的效应.南京林业大学学报:自然科学版,27(4):39-43.
    刘润进,陈应龙.2007.菌根学.北京:科学技术出版社.
    刘润进,李晓林.2000.丛枝菌根及其应用.北京:科学出版社.
    刘志敏,黄建国.2009.钾对外生菌根真菌分泌氢离子及吸收氮磷钾的影响.甘肃农业科技,1:25-27.
    刘明,孙世贤,齐华,杨国航,白向历,张振平,梁熠,孟显华.2009.水分胁迫对玉米苗期叶绿素荧光参数的影响.玉米科学,17(3):95-98.
    卢从明,张其德,匡延云.1994.水分胁迫对小麦光系统Ⅱ的影响.植物学报,36(2):93-98.
    罗伟祥.1996.菌根及其在林业上的应用.陕西林业科技,(2):37-40.
    罗华建,刘星辉,谢厚钗.1999.水分胁迫对枇杷叶片活性氧代谢的影响.福建农业大学学报,28(1):33-37.
    罗俊,张木清,林彦铨,张华,陈如凯.2004.甘蔗苗期叶绿素荧光参数抗旱性关系研究.中国农业科学,37(11):1718-1721.
    吕全,雷增普.2000.外生菌根提高板栗苗木抗陛能及其机理的研究.林业科学研究,13(3):249-256.
    卯晓岚.2000.中国大型真菌..郑州:河南科技出版社.
    聂俊峰,韩清芳,问亚军,贾志宽,蒋骏.2005.我国北方农业旱灾的危害特点减灾对策.干旱地区农业研究,23(6):171-178.
    潘瑞炽,豆志杰,叶庆生.1995.茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响.植物生理学报,21(3):221-228.
    潘东明,潘良镇.1997.水分胁迫对龙眼幼苗多胺等生理生化指标的影响.福建农业大学学报,26(3):277-282.
    蒲光兰,周兰英,胡学华,邓家林,刘永红,肖千文.2005.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响.干旱地区农业研究,23(3):44-48.
    任文伟,钱吉,郑师章.2000.不同地理种群羊草在聚乙二醇胁迫下含水量和脯氨酸含量的比较.生态学报,20(2):349-352.
    山、仑,陈培元.1998.旱地农业生理生态基础.北京:科学出版社.
    史正军,樊小林.2003.干旱胁迫对不同基因型水稻光合特性的影响.干旱地区农业研究,21(3):123-126.
    宋丽丽,郭延平,徐凯,张良诚.2003.温州蜜柑叶片光合作用光抑制的保护机理.应用生态学报,14(1):47-50.
    宋勇春,冯固,李小林.2003.不同磷源对红三叶草根际和菌根际磷酸酶活性的影响.应用生态学报,14(5):781-784.
    孙民琴,吴小芹,叶建仁.2007.外生菌根真菌对不同松树出苗和生长的影响.南京林业大学学报:自然科学版,31(5):39-43.
    孙景宽,张文辉,陆兆华,刘新成.2009.干旱胁迫下沙枣和孩儿拳头叶绿素荧光特性研究.植物研究,29(2):216-223.
    唐明,陈辉,郭建林,侯登武.1994.陕西省杨树外生菌根种类的调查研究.林业科学,30(5):437-441.
    唐明,薛萐,任嘉红,胡景江,刘建朝.2003.AMF提高沙棘抗旱性的研究.西北林学院学报,18(4):29-31.
    邰社红.2001.土壤干旱对毛白杨菌根接种效应的影响[硕士学位论文].陕西杨凌:西北农林科技大学.
    王绑锡,黄久常,王辉.1989.不同植物在水分胁迫条件下脯氨酸积累抗旱性的关系.植物生理学报,15(1):46-51.
    王可玢,许春晖,赵福洪,唐崇钦,戴云玲.1997.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,13(2):273-278.
    魏媛,张金池,尹晓阳,杨萍.2007.华山松菌根化幼苗的抗旱特性.南京林业大学学报,2007,4(9):73-76.
    吴炳云,梁乃中.1991.外生菌根对油松苗木抗旱性的影响.北京林业大学学报,13(增刊2):281-289.
    吴强盛,夏仁学.2004.VA菌根植物水分代谢的关系.中国农学通报,20(1):188-192.
    武维华.2003.’植物生理学.北京:科学出版社,440-448.
    谢一青,李志真,杨宗武.2002.pH、盐浓度及铝离子对菌根菌生长的影响.江西农业大学学报(自然科学版),24(2):204-207.
    徐俊森,杨细明,郑天汉,陈清森,林武星,傅忠华,潘惠忠,隆学武.2002.干旱胁迫对木麻黄小枝细胞膜伤害机理的研究.防护林科技,1:164-167.
    徐晓辉.2006.杨树幼苗对水分胁迫的生理响应及其机制研究[硕士学位论文].沈阳:沈阳农业大学.
    薛小平,张深,李海涛,陈吉,黄建国.2008.磷对外生菌根真菌松乳菇和双色蜡蘑草酸、氢离子和磷酸酶分泌的影响.菌物学报,27(2):193-200.
    闫伟,韩秀丽,白淑兰,邵东华.2006.虎榛子几种菌根苗抗旱机制的研究.林业科学,12(42):73-76.
    姚允聪,张大鹏,王有年,高遐虹.2000.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究.果树科学,7(1):1-6.
    易杨杰,张新全,高杨,严欢,初秀娟.2008.不同狗牙根品种对聚乙二醇胁迫反应的差异.北方园艺,9:96-99.
    尹春英.2005.青杨组不同种对干旱胁迫的反应差异[博士学位论文].四川成都:中国科学院成都生物研究所.
    曾小红,伍建榕,马焕成.2008.接种根瘤菌的台湾相思对干旱胁迫的生化响应.浙江林学院学报,25(2):181-18.
    张茹琴.2008.秦岭外生菌根真菌多样性及其提高油松抗猝倒病的机制[博士学位论文].陕西杨凌:西北农林科技大学.
    张守仁.1999.叶绿素荧光诱导动力学参数的意义及讨论.植物学通报,16(4):444-448.
    张英利,许安民,尚浩博,马爱生.2006.AA3型连续流动分析仪测定土壤和植物全氮的方法研究.西北农林科技大学(自然科学版),34(10):128-32.
    张旺锋,勾玲,王振林,李少昆,余松烈,曹连莆.2003.氮肥对新疆高产棉花叶片叶绿素荧光动力学
    参数的影响.中国农业科学,36(8):893-898.
    赵丽英,邓西平,山仑.2007.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报,15(1):63-66.
    赵听,宋瑞清,阎秀峰.2009.接种AM真菌对喜树幼苗生长及光合特性的影响.植物生态学报,33(4):783-790.
    赵宏天,沈秀瑛,杨德光,马秀芳.2003.水分胁迫及复水对玉米叶片叶绿素含量和光合作用的影响杂粮作物,23(1):33-35.
    赵志鹏,郭秀珍.1989.外生菌根真菌纯培养的生态学研究.林业科学研究,2(2):136-141.
    朱教君,许美玲,康宏樟,徐慧,闫军杰.2005.温度、pH及干旱胁迫对沙地樟子松外生菌根菌生长影响.生态学杂志,24(12):1375-1379.
    周崇莲,齐玉臣.1993.外生菌根植物营养.生物学杂志,129(1):37-44.
    周婵,杨允菲,李建东.2002.松嫩平原两种趋异类型羊草对干旱胁迫的生理响应.应用生态学报,13(9):1109-1112.
    Agerer R.2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress, 5(3):67-107.
    Allen MF.1991. The ecology of mycorrhizae. New York:Cambridge University Press.
    Alberte R S, Thornber J P, Fiscus E L.1977. Water stress effects on the content and organization of chlorophyll in mesophyll and bundle sheach chloroplasts of maize. Plant Physiology,59:351-353.
    Bogeat-Triboulot MB, Bartoli F, Garbaye J, Marmeisse R, Tagu D.2004. Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant and soil,267(1/2):213-223.
    Bjorkman O.1987(a). High-irradiance stress in higher plants and interaction with other stress factors. Prog Photosyn Res.4:11-18.
    Boyle C D, Hellenbrand K E.1991. Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Canadian Journal of Botany,69:1764-1771.
    Brundrett M.1991. Mycorrhizas in natural ecosystems. In:A. Macfayden, M. Begon and A.H. Fitter, Editors, Advances in Ecological Research. London, Academic Press Ltd,21:171-313.
    Blum A, Ebercon A.1976. Genotypic responses in sorghum to drought stress free proline accumulation and drought resistanc. Crop Science,16:428-431.
    Bhaskaran S, Smith R H, Newton R J.1985. Physiological changes in cultural sorghum cell in response to induced water stress free proline. Plant Phsiology,79:266-269.
    Burke D.J., Hameriynck E.P., Hahn D.2002. Effect of arbuscular mycorrhizae on soil microbial populations and associated plant performance of the salt marsh grass Spartina patens. Plant and Soil, 239:141-154.
    Deming-Adams B. Adams Ⅲ WW.1992. Photoprotection and other responses of plants to high light stress. AnnRev Plant Physiol Plant Mol Biol,43:599-626.
    Demmig B, Winter K, Kruger A,Czygan FC.1987. Photoinhibition and zeaxanth information in intact leaves. Plant physiol,84(2):218-224.
    Dixon P K, Pallardy S C, Garrett H E.1983. Comparation water relations of containergrown and bore-root ectomycorrhiza and nonmycorrhizal Quercus velutina seedlings. Can J Bot,61:1559-1565.
    Flexas J. Escalona J M. Medrano.H.1999. Water stress induces different levels photosynthesis and electron transport ratede regulation in grapevines. Plant Cell and Environment,22:39-48.
    Gergely I.1980. Polyethylene glycol induced water stress effects on apple seedlings. Am Soc Hortis Sci, 105:854-857.
    Griffin D H.1994. Fungal Physiology, Second Edition. New York:Wiley-Liss.
    Genty B, Briantais JM, Baker NR.1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta,900:87-92.
    Hartley, JWG, Megarg, AA.1999. Influence of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution,106(2):169-182.
    Hojka K, Samar SP, Tine G, Primoz S.2007. Types of ectomycorrhiza as pollution stress indicators:case studies in Slovenia. Environmental Monitoring and Assessment,128:31-45.
    Harley JL, Smith SE.1983. Application of mycorrhizal symbiosis in forestry practice. London: Mycorrhizal Symbiosis Academic Press,1-483.
    Harley J L.1959. The biology of mycorrhiza. London:Leonard Hill,261-270.
    Hoagland D R, Arnon D I.1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Ciucular,347:1-32.
    Jaleel, C.A., P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi, R.Somasundaram and R. Panneerselvam.2007. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B: Biointerfaces,60:201-206.
    Ji X B, Holloeher T C.1988. Reduction of nitrite to nitric oxide by enteric bacteria. Biochem Biophys Res Conunun,157(1):106-108.
    Kottke I, Guttenberger M, Hammpp R.1987. An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees,1:191-1941.
    Kikuchi J,Tsuno N,Futai K.1991. The effect of mycorrhizae as a resistance factor of pine trees to the pinewood nematode. Journal the Japanese Forestry Society,73(3):216-218.
    Langenfeld-Heyser R, Gao J, Ducic T, Tachd P, Lu CF, Fritz E, Gafur A.2007. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populusxcanescens. Mycorrhiza,17(2):121-131.
    Luna M. Badiani M, Felice M.1985. Selective enzyme inactivation under water stress in maize and wheat seedlings. Environ. Exp.Bot.,25:153-56.
    Lu C M, Zhang J H.1999. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental of Botany,50(336):1199-1206.
    Lodge DJ.1989. The influence of soil moisture and flooding on formation of VA-endo-and ectomycorrhizae in Popolus and Salix. Plant and soil,117:243-258.
    Lee K, Koo C.1985. Enhancement of growth and survival of Populusalba×P. glandulosa cutting inoculated with ectomycorrhizal fungu Pisolithus tintoriusunder fumigated nursery condition. Journal of Korean Forestry Society,70:72-76.
    Michael BE, Kaufaman MR.1973. The osmotic potential of polyethy-leneglycol,6000. Plant Physiol,51: 914-916.
    Min Sheng, Ming Tang, Hui Chen, Baowei Yang, Fengfeng Zhang, Yanhui Huang.2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza,18(6-7):287-296.
    Maxwell K, Johnson GN.2000. Chlorophyll fluorescence—a Practical guide. Journal of Experiment Botany,51:659-668.
    Nathawat N S, Nair J S, Kumawat S M,Yadava N.S., Singh G., Ramaswamy N. K., Sahu M. P., Souza S. F. D'.2007. Effect of seed soaking with thiols on the antioxidant enzymes and photosystem activities in wheat subjected to water stress. Biologia plantarum,51(1):93-97.
    Paradi I, Bratek Z, Lang F.2003. Influence of arbuscular-mycorrhiza and phosphorus supply on polyamine content,growth and photosynthesis of Plantago lanceolata. Biologia Plantarum,46:63-69.
    P.M. Deo, U.C. Biswal, and B. Biswal.2006. Water stress-sensitized photoinhibition in senescing cotyledons of clusterbean:Changes in thylakoid structures and inactivation of photosystem. Photosynthetica,44(2):187-192.
    Quartacci M F, Vari-Zzo F.1992. Water stress an free radical mediated changes in sunflower seedlings. Plant Physiol,142:621-625.
    Reid C PP.1978. Mycorrhizae and water stress. In:Riedacker, A. Root Physoiology and Symbiosis. New York:Nancy,392-408.
    Ruizlozano J M, Azcon R.1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuce sativa plants subjected to drought stress. New Physiologist,134(2):327-333.
    Ruizlozano J M, Azcon R.1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuce sativa plants subjected to drought stress. New Physiologist,134(2):327-333.
    Ristic Z, David D.1992. Chloroplast structure after water and high temperature stress in two lines of maize that differ in endogenous levels of abscises acid. International Journal Plant Science,153:186-196.
    Smith SE, Read DJ.1997. Mycorrhizal symbiosis. New York:Academic.
    Spickett C M, Smirnoff N, Ratdiffe R G.1992. Metabolic responses of maize roots to hyperosmotic ahock. Plant Physiol,99:856-863.
    Sanchez F, Honrubia M, Pilar T.2001. Effects of pH, Water and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Crypogamie,Mycol,22(4):243-258.
    Silva Sonjak, Metka Udovicl, Tone Wrabera, Matevz Likar, Marjana Regvar.2009. Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje salterns. Soil Biology and Biochemistry,41(9):1847-1856.
    Seiler JR. Johnson, JD.1988. Physiological morphological responses of three half-sib families of loblolly pine to water stress conditioning. Forest Sci.,34(2):487-495.
    Singh T N, Aspinall F, Paley L G.1972. Proline accumulation and varietal adapt ability to drought in barley:A potential metabolic measure of drought resistance. Nature,236:188-190.
    Schreiber U, Schliwa U, Bilger W.1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research,10:51-62.
    Schreiber U, Bilger W, Neubauer G.1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of invivo photosynthesis. Ecophysiology of Photosynthesis.(eds Schulze, E-D and Caldwell, MM.), Springer-Verlag, Berlin,49-70.
    Sannazzaro A.I.,Ruiz O.A., Alberto E.O, Menendez AB.2006. Alleviation of salt stress in lotous glaber by Glomus intraradices. Plant and Soil,285(1-2):279-287.
    Tang Ming, Chen Hui.1995. The effect of Vesicular-A rbuscular mycorrhizas on the resistance of poplar to a canker fungus(Dothiorella gregaria). Mycorrhizas for plantation fo restry in Asia. ACLAR,62: 67-71.
    Trapp J M.1962. Fungus associated of ectotrophic mycorrhizae. Bot Rev,28:538-606.
    Takeshi T, Ryota K, Kazuyolii F.2008. Plant growth and nutrition in pine(Pinus thunbergii)seedings and dehyclrogenase and phosphaase activity of ectomycorrhizal root tips inoculated with seven individual ectomycbrrhizal fungal species at high and low nitrogen conalitions. Soil Biology& Biochemistry, 40(5):1235-1243.
    Vander Mescht A, deRonde J A.1999. Chlorophyll fluorescence and chlorophyll content as a measure of drought tolerance in potato. South A frican Journal of Science,95 (99):407-413.
    Van Kooten, O, and Snel, J.F.H.1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Research,25:147-150.
    Whipps JM.2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany,82:1198-1227.
    Yamada A, Ogura T, Ohmasa M.2001. Cultivation of mushrooms of edible ectomycorrhizal fungi associated with Pinus densiflora by in vitro mycorrhizal synthesis Ⅱ. Morphology of mycorrhizas in open-pot soil. Mycorrhiza,11:67-81.
    Zhang J X, Kirkham M B.1994. Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology,35(5):785-791.
    Zhang J X, Kirkham M B.1996. Antioxidant responses to drought in sunflower and sorghum seedlings. NewPhtol,132 (2): 361-373.
    Zhao CM, wang GX,2002. Effects of drought stress on the photoprotection in Ammopiptanthus mongolicus leaves. Acta Botanica Sinica,44(11):1309-1313.
    ZHANG M Q(张木清),CHEN RK(陈如凯),YUSL(余松烈).1996. Mat hematical analysis for the active oxygen metabolism in the drought stressed leaves of sugarcane. Acta Agronomica Sinica(作物学报),22(6):729-735.
    Zuccarini P., Okurowska P.2008. Effects of mycorrhizal colonization and fertilization on growth and photoynthesis of sweet basil under salt stress. Journal of Plant Nutrition,31:497-513.