红细胞生成素对慢性肾衰竭大鼠内皮祖细胞动员和肾脏修复的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究促红细胞生成素(erythropoietin, EPO)对慢性肾衰竭(chronic renal failure, CRF)大鼠外周血内皮祖细胞(endothelial progenitor cells, EPCs)的数目和功能的影响,以及对肾脏的修复作用。
     方法采用分阶段5/6肾切除术制备大鼠慢性肾功能衰竭动物模型。实验动物随机分为4组:假手术组(Control),慢性肾衰竭组(模型组)及rHuEPO干预的两个剂量亚组(小剂量组和大剂量组)。慢性肾衰竭大鼠皮下注射rHuEPO 6周后,密度梯度离心法从大鼠心脏血中分离单个核细胞,接种于铺有纤维连接蛋白的培养瓶内,给予含有血管内皮生长因子(VEGF)等的M199培养基。通过流式检测细胞表面标记CD34,CD133和KDR以及免疫荧光检测细胞内吞UEA-1和结合acLDL来鉴定EPCs,并检测EPCs增殖、粘附及形成血管结构的能力。用免疫组化检测肾组织CD34+细胞数目、肾小球CAP内皮细胞密度,用RT-PCR检测肾组织eNOS、ET1、TGF-β、VEGF、COL IVmRNA的表达,检测Scr、BUN、尿蛋白指标并观察肾组织病理改变。
     结果内皮祖细胞的鉴定用激光共聚焦显微镜观察,显示细胞DiI-acLDL和FITC-UEA-1呈免疫双荧光阳性。应用流式细胞仪检测体外培养的细胞表达EPCs公认的表面标记CD133、CD34、VEGFR-2的阳性率分别为4.14%、79.42%、55.7%。应用rHuEPO治疗能显著增加残肾模型大鼠EPC增殖、粘附及形成血管结构的能力(P<0.05),显著增加肾组织CD34+细胞的数目以及肾小球毛细血管内皮细胞密度(P<0.05),上调肾组织VEGF、eNOS mRNA的表达(P<0.05),下调肾组织ET1、TGF-β、COL IV mRNA的表达(P<0.05),改善肾小球毛细血管内皮功能。尿蛋白、血肌酐及尿素氮水平明显降低(P<0.05),肾小球系膜增生及间质纤维化程度明显减轻(P<0.05)。
     结论EPO可能通过促进EPC的动员、增殖、粘附以及形成血管样结构的能力,从而修复和改善肾小球毛细血管内皮功能、改善肾功能、减轻肾脏的病理改变。
Objective To investigate the influence of erythropoietin (EPO) to the number and ability of endothelial progenitor cells (EPCs) and renal renovation in chronic renal failure (CRF) rats.
     Methods The model of chronic renal failure was established by a two stage 5/6 nephrectomy proeedure in rats. Experimental animals were randomly divided into four groups: Control group, CRF group, CRF rats treated with low-dosage EPO and with high-dosage EPO. CRF rats were given EPO by hypodermic injection for 6 weeks, then density gradient centrifugation from isolated rat heart blood mononuclear cells, vaccination in the shop were fibronectin culture bottle,to contain the vascular endothelial growth factor (VEGF), such as the M199 medium. Flow cytometry was used to detect the expression of CD34, CD133 and KDR of the cultured cells, and immunofluorescence was performed to display the character of endocytosing UEA-1 and combining acLDL, and the capacity of the cells’proliferation, adhesion and invitro vasculogenesis were further ovserved. The number of CD34 cells in nephridial tissue and the density of glomerulus CAP endothelial cell were detected by Elivision. The expression of mRNA of eNOS, ET1, TGF-β,VEGF and IV collagen in nephridial tissue were detected by RT-PCR. The Scr, BUN and urine protein were measured and renal pathological changes were observed.
     Results The cells could take up DiI-acLDL, and bind to FITC-UEA-1, showed double positive fluorescence under LSCM. Cultured EPCs at the passage 1 were positive for CD133, CD34 and VEGFR-2 (4.14%, 79.42% and 55.7% respectively).After treatment of EPO, the capacity of the cells’proliferation, adhesion and invitro vasculogenesis were promoted significantly (P<0.05), the number of CD34 cells in nephridial tissue and the density of glomerulus CAP endothelial cell were increased significantly (P<0.05), the expression of mRNA of VEGF and eNOS in nephridial tissue were raised significantly (P<0.05), the expression of mRNA of ET-1, TGF-βand IV collagen were falled significantly (P<0.05), the urinary protein, Scr and BUN of erythropoietin group were reduced significantly, and the glomerular mesangial proliferation and interstitial fibrosis were ameliorated significantly (P<0.05).
     Conclusion It might be through improving the ability of EPCs’mobilization, proliferation, adhesion and invitro vasculogenesis that EPO can ameliorate the ability of glomerulus CAP endothelial cell, renal function and pathological changes.
引文
[1] Ohashi R, Shimizu A, Masuda Y, et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy [J]. J Am Soc Nephrol, 2002, 13: 1795-1805.
    [2] Asahara T, Murohara T, Sullivan A, et al.Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275:964-967.
    [3] Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization, Blood, 2003, 102:1340-1346
    [4]Rafii S, Lyden D, Benezra R, et al.Vascular and hematopoietic stem cells: novel targets for anti-angiogenesis therapy[J]. Nat Rev Cancer, 2002, 2:826-835.
    [5]Hristov M, Erl W, Weber PC. Endothelial Progenitor cells :mobilization,differentiation,and homing[J].Arterioscler Thromb Vase Biol,2003,23: 1185 -1189.
    [6] De Groot K, Bahlmann FH, Sowa J, et al. Uremia causs endothelial progenitor cell deficiency [J]. Kidney Int, 2004, 66:641-646.
    [7]Ma FX, Zhou B, Chen Z,et al. Oxidized low density lipoprote in impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase[J]. J Lipid Res, 2006,47:1227-1237.
    [8]Bahlmann FH, DeGroot K, Duckert T, et a1. Endothelial progenitor cell proliferation and diferentiation is regulated by erythropoietin[J]. Kidney Int, 2003, 64: 1648- 1652.
    [9] Chang YK, Choi DE, Na KR, et a1. Erythropoietin attenuates renal injury in an experimental model of rat unilateral ureteral obstruction via anti-inflammatory and anti-apoptotic effects [J]. J Urol, 2009, 181:1434-1443.
    [10] Choi DE, Jeong JY, Lim BJ, et al.Pretreatment with darbepoetin attenuates renal injury in a rat model of cisplatin-induced nephrotoxicity [J]. Korean J Intern Med, 2009, 24:238-246.
    [11] Trzonkowski P, Debska-Slizien A, My?liwski A, et al. Treatment with recombinant human erythropoietin is associated with rejuvenation of CD8+ T cell compartment in chronic renal failure patients[J]. Nephrol Dial Transplant, 2007,22:3221-3227.
    [12] Shurtz-Swirski R,Kristal B, Shasha SM, et al. Interaction between erythropoietin and peripheral polymorphonuclear eukocytes in continuous ambulatory dialysis patients[J]. Nephron, 2002, 91: 759-761.
    [13] Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem / progenitor cell mobilization [J]. Blood, 2004, 103:1580-1585.
    [14] De Groot K, Bahlmann FH, Sowa J, et al. Uremia causes endothelial progenitor cell deficiency [J]. Kidney Int, 2004, 66:641-646.
    [15] Westenbrink BD, Lipsic E, van der Meer P, et a1. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization [J]. Eur Heart J, 2007, 28: 2018-2027.
    [16] Ballevre L, So lhaug M J, Guignard JP. Nitric oxide and the immature kidney[J]. Biol Neonate, 1996,70: 1-14.
    [17] Nakazawa J, Isshiki K, Sugimoto T, et al. Renoprotective effects of asialoerythropoietin in diabetic mice against ischaemia-reperfusion-induced acute kidney injury [J]. Nephrology (Carlton),2010,15:93-101.
    [18] Pureti? Z. Characteristics of anaemia treatment in children with chronic kidney disease [J]. Acta Med Croatica, 2009 ,63:27-32.
    [19] Besarab A, Bolton WK, Browne JK, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med, 1998,339:584–659.
    [20] Sun D, Feng J, Dai C, et al. Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy [J]. Am J Nephrol, 2006, 26: 363- 371.
    [21] Wang W, Zhang J. Protective effect of erythropoietin against aristolochic acid-induced apoptosis in renal tubular epithelial cells[J]. Eur J Pharmacol, 2008 ,588: 135-140.
    [22] Metivier F, Marchais SJ, Guerin AP, et al. Pathophysiology of anaemia: Focus on the heart and blood vessels [J]. Nephrol Dial Trans-plant, 2000,15:14-18.
    [23] Lee YP, Tay E, Lee CH, et al. Endothelial progenitor cell capture stentimplantation in patients with ST-segment elevation acute myocardial infarction: one year follow-up[J].EuroIntervention, 2010 ,5:698-702.
    [24] Imazuru T, Matsushita S, Hyodo K, et al. Erythropoietin enhances arterioles more significantly than it does capillaries in an infarcted rat heart model[J].Int Heart J, 2009,50:801-810.
    [1] Baker JE. Erythropoietin mimics ischemic preconditioning [J]. Vascul Pharmacol, 2005, 42(5-6): 233-241.
    [2] Sugiyama H, Kashihara N, Maeshima Y, et al. Regulation of survival and death of mesangial cells by extracellular matrix [J]. Kidney lnt, 1998, 54: 1188-1196.
    [3] Chang YK, Choi DE, Na KR, et a1. Erythropoietin attenuates renal injury in an experimental model of rat unilateral ureteral obstruction via anti-inflammatory and anti-apoptotic effects[J]. J Urol, 2009, 181: 1434-1443.
    [4] Wang W, Zhang J. Protective effect of erythropoietin against aristolochic acid-induced apoptosis in renal tubular epithelial cells[J]. Eur J Pharmacol, 2008, 588:135-140.
    [5] Bahlmann FH, Song R, Boehm SM, et a1. Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure [J].Circulation, 2004, 110: 1006-1012.
    [6] Sharples EJ, Patel N, Brown P, et a1. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion [J]. J Am Soc Nephrol, 2004, 15: 2115-2124.
    [7] Mizuno S, Nakamura T. Prevention of neutrophil extravasation by hepatocyte growth factor leads to attenuations of tubular apoptosis and renal dysfunction in mouse ischemic kidneys [J]. Am J Pathol, 2005, l66: 1895-1905.
    [8] Cao CC, Ding XQ, Liu CF, et al. In vivo transfection of NF-kappaB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats [J]. Kidney Int, 2004, 65: 834-845.
    [9] Choi DE, Jeong JY, Lim BJ, et al.Pretreatment with darbepoetin attenuates renal injury in a rat model of cisplatin-induced nephrotoxicity[J]. Korean J Intern Med, 2009, 24: 238-246.
    [10] Shurtz-Swirski R, Kristal B, Shasha SM, et al. Interaction between erythropoietin and peripheral polymorphonuclear leukocytes in continuous ambulatory dialysis patients [J]. Nephron, 2002, 91: 759-761.
    [11] Lee SH, Li C, Lim SW, et al. Attenuation of interstitial inflammation and fibrosisby recombinant human erythropoietin in chronic cyclosporine nephropathy [J]. Am J Nephrol, 2005, 25: 64-76.
    [12] Schaefer RM, Paczek L, Berthold G, et al. Improved immunoglobulin production in dialysis patients treated with recombinant erythropoietin [J]. Int J Artif Organs, 1992, 15: 204-208.
    [13]Trzonkowski P, Debska-Slizien A, My?liwski A, et al. Treatment with recombinant human erythropoietin is associated with rejuvenation of CD8+ T cell compartment in chronic renal failure patients[J]. Nephrol Dial Transplant, 2007, 22: 3221-3227.
    [14] Piotr T, Jolanta M, Alicja D, et al. Long - term therapy with recombinant human erythropoietin decreases percentage of CD152(+) lymphocytes in primary glomerulonephritis haemodialysis patients[J]. Nephrol Dial Transplant, 2002, 17: 1070-1080.
    [15] Trzonkowski P, Debska-Slizien A, Szmit E, et al. Long term therapy with recombinant human erythropoietin increases CD8 + T- cell apoptosis in haemodialysis patients [J]. Nephrol Dial Transplant, 2005, 20: 367-376.
    [16]Debaka - Slizien A, Rutkowski B, Manitius J, et al. Influence of erythropoietin on immunological system of patients with chronic renal failure [J]. Pol Merkur Lekarski, 2003, 15: 326-327.
    [17] Ohashi R, Shimizu A, Masuda Y, et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy [J]. J Am Soc Nephrol, 2002, 13: 1795-1805.
    [18] Jaquet K, Krause K, Tawakol-Khodai M, et a1. Erythropoietin and VEGF exhibit equal angiogenic potential [J]. Micovasc Res, 2002, 64: 326-333.
    [19] Heeschen C, Aicher A, Lehmann R, et a1. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization [J]. Blood, 2003, 102: 1340-l346.
    [20] Sun D, Feng J, Dai C, et al. Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy [J]. Am J Nephrol, 2006, 26: 363- 371.
    [21] Yilmaz S, Ates E, Tokyol T, et al. The protective effect of erythropoietin onischemia/ reperfusion injury of liver [J]. HPB (Oxford), 2004, 6: 169-173.
    [22] Yokomaku Y, Sugimoto T, Kume S, et al. Asialoerythropoietin prevents contrast-induced nephropathy[J] J Am Soc Nephrol, 2008, 19:321-328.
    [23] Mennini T, De Paola M, Bigini P, et al. Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo[J].Mol Med, 2006, 12: 153-160.