油松菌根伴生真菌外生菌根真菌的互作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用富集培养技术从油松菌根分离鉴定菌根伴生真菌,通过光学和扫描电子显微镜对外生菌根真菌菌根伴生真菌在平板对峙培养和对油松苗接种后根际上的互作情况进行观察,研究菌根伴生真菌对外生菌根真菌产酶的影响以及接种外生菌根真菌和菌根伴生真菌油松根系活力,硝酸还原酶活性等生理指标的变化,揭示菌根伴生真菌外生菌根真菌的互作机制。得出以下主要结果:
     1.菌根伴生真菌的分离和鉴定
     从油松菌根分离到4株菌根伴生真菌(Mycorrhizal-associated Fungi),经形态特征和菌落特征观察及分子生物学鉴定,分别属于半知菌类的丝孢纲、丛梗孢目、丛梗孢科、木霉属中的哈茨木霉Trichoderma harzianum HDTP-1和T.harzianum HDTP-3(简称HDTP-1和HDTP-3);藻状菌纲、毛霉目、毛霉科、毛霉属中的冻土毛霉Mucor hiemalisSA10-6 HDTP-4和M.hiemalis XSD-98 HDTP-5(简称HDTP-4和HDTP-5)。
     2.外生菌根真菌菌根伴生真菌的互作
     对峙培养结果表明褐黄牛肝菌(Boletus luridus)、粘盖牛肝菌(Suillus bovinus、褐环粘盖牛肝菌(Suillus luteus)和铆钉菇(Gomphidius viscidus)对4株菌根伴生真菌均有抑制作用,互作区域外生菌根真菌有缠绕或侵入菌根伴生真菌菌丝体的现象,菌根伴生真菌菌丝体分支增多或降解,短支顶端膨大。4株外生菌根真菌在含有菌根伴生真菌菌丝体培养液中均能生长,对照相比有显著促进作用。
     铆钉菇侵染油松形成菌根2个月后,接种菌根伴生真菌菌丝和孢子悬液2、3、5和7d观察其互作情况。接种2或3 d后,菌根伴生真菌菌丝在非菌根化的油松根表大量生长,但在菌根化油松根表受到抑制。接种5 d后菌根化油松根表有断裂的伴生真菌菌丝体和粘液物质形成,偶尔可见孢子附着于菌根表面,而接种7 d后,菌根表面就只能观察到伴生真菌菌丝碎片和原生质状物质。
     3.菌根伴生真菌对外生菌根真菌产酶的影响
     ①菌根伴生真菌均能诱导褐黄牛肝菌和粘盖牛肝菌产生几丁质酶;除HDTP-3外,其余3株能诱导褐环粘盖牛肝菌产生几丁质酶,但产酶能力较低;HDTP-4诱导铆钉菇产几丁质酶能力最高。②4株菌根伴生真菌中,只有HDTP-5能诱导褐环粘盖牛肝菌产β-1,3-葡聚糖酶;除HDTP-4外,其它3株均能诱导粘盖牛肝菌和铆钉菇产生β-1,3-葡聚糖酶;4株菌根伴生真菌均能诱导褐黄牛肝菌产β-1,3-葡聚糖酶。③4株菌根伴生真菌均能诱导褐环粘盖牛肝菌、粘盖牛肝菌和褐黄牛肝菌产β-葡萄糖苷酶;而铆钉菇只被HDTP-1和HDTP-3诱导,且酶活性较低。④4株菌根伴生真菌诱导的外生菌根真菌所产的中性蛋白酶活性,均以褐黄牛肝菌最高,铆钉菇最低。⑤菌根伴生真菌极显著诱导褐环粘盖牛肝菌和粘盖牛肝菌的漆酶活性;显著诱导褐黄牛肝菌和铆钉菇漆酶活性。⑥菌根伴生真菌极显著诱导3种牛肝菌、显著诱导铆钉菇多酚氧化酶活性;除粘盖牛肝菌外,菌根伴生真菌诱导其它3种外生菌根真菌产多酚氧化酶活性无显著差异。
     4.外生菌根真菌和菌根伴生真菌对油松的接种效应
     外生菌根真菌铆钉菇和菌根伴生真菌能够通过影响油松根系活力、根系质膜相对透性、提高硝酸还原酶活性、增加叶绿素含量等方式,使地上地下部分协同作用,促进油松生长。菌根化油松(无论只接铆钉菇或铆钉菇菌根伴生真菌双接种)在总干重、根系活力、根系硝酸还原酶活性和叶绿素含量上显著高于非菌根化油松苗。但接种铆钉菇的油松和铆钉菇菌根伴生真菌双接种的油松之间无差异,对照株和直接菌根伴生真菌植株之间也无差异。对促进油松苗木生长的不同外生菌根真菌和菌根伴生真菌最佳组合有待于进一步探讨。
In this paper, Mycorrhizal-associated fungi were isolated by enrichment culture techniques from Pinus tabulaeformis and identificated, then the interaction between mycorrhizal-associated fungi and ectomycorrhizal fungi in co-culture and in the rhizosphere of P. tabulaeformis were observed by optical and electron microscopy techniques, the influence of autoclaved mycelia of mycorrhizal- associated fungi on the production of enzymes by four ECM fungal species , as well as the root activity, nitrate reductase activity etc. physiological indicators of P. tabulaeformis inoculated mycorrhizal-associated fungi and ectomycorrhizal fungi was grown in pots were determined. Mechanism of the interaction between mycorrhizal-associated fungi and ectomycorrhizal fungi was revealed, so as to provide a scientific basis for the guidance of agricultural production and analysis of interactions among ecosystem species. The main results were as follows:
     1 Identify the mycorrhiza-associated fungi of P. tabulaeformis Through morphology and molecular biology techniques, The two strains HDTP-1 and HDTP-3 were identified as Trichoderma harzianum in Trichoderma sp. of Moniliaceae family in Moniliales, Hyphomycetales, Deuteromycotina, While HDTP-4 and HDTP-5 belong to Mucor sp. of Mucorales family in Mucorales, Phycomycetes, Fungi, were Mucor hiemalis SA10-6, Mucor hiemalis XSD-98, respectively.
     2 The interaction between mycorrhizal-associated fungi and ectomycorrhizal fungi in co-culture and the rhizosphere of P. tabulaeformis Four kinds of ectomycorrhizal fungi could inhibited the growth of mycorrhizal-associated fungi, Moreover, ectomycorrhizal fungi coiled around and penetration of the hyphae into mycorrhizal-associated fungi, the hyphae of mycorrhizal-associated fungi were more branched or deformed or apical swelling. Four kinds of ectomycorrhizal fungi could grow in culture medium contain mycelia of mycorrhizal-associated fungi,
     Two month-old mycorrhizae of P. tabulaeformis/G. viscidus were inoculated with a conidial suspension of mycorrhiza-associated fungi and examined at intervals of 2, 3, 5, and 7 days post-inoculation (p.i.). On non-mycorrhizal roots, conidia germination was high and long hyphae formed 2 or 3 days p.i., whereas their germination was totally inhibited on mycorrhizal roots. At 5 days after inoculation, only sporangia were seen with mycelial mats firmLy attached to the roots by the mantle hyphae, whereas some remnants of sporangiophores, ruptured sporangial walls and degraded hyphae of mycorrhiza-associated fungi were overgrown by the mantle hyphae. During the next 2 days, On mycorrhizal roots, only mycelial debris and protoplast-like material were observed 7 days p.i.
     3 Influence of autoclaved mycorrhizal-associated fungal mycelia on enzymes in ectomycorrhizal fungi①Mycelia of 4 strains of mycorrhizal-associated fungi could inducechitinase in B. luridus and S. bovines. For the synthesis of chitinolytic enzyme by S. luteus, lower activity was observed in T. harzianum HDTP-1、M. hiemalis SA10-6 HDTP-4 and M. hiemalis XSD-98 HDTP-5, whereas M. hiemalis SA10-6 HDTP-4 turned out to be the best substrate for the induction of chitinase for G. viscidus.②For the synthesis ofβ-1, 3-glucanases by S. luteus in only M. hiemalis XSD-98 HDTP-5 was observed. Noβ-1, 3-glucanases was noted for S. bovines in the presence of the mycelium of M. hiemalis SA10-6 HDTP-4. Mycelia of 4 strains of mycorrhizal-associated fungi could induceβ-1, 3-glucanases in B. luridus③The activity ofβ-glucosidases was observed for S. luteus, B. luridus and S. bovines in the presence of mycelium of 4 strains of mycorrhizal- associated fungi. For the synthesis ofβ-glucosidases by G. viscidus, lower activity was observed in T. harzianum HDTP-1 and harzianum HDTP-3.④Among several strains of ectomycorrhizal fungi, B. luridus was characterized as the highest neutral proteolytic activity when induced by the mycelia of the four strains of mycorrhiza-associated fungi, while G. viscidus was the lowest.⑤For the synthesis of laccase by S. luridus and S. bovines in 4 strains of mycorrhiza-associated fungi were greatly higher than control, whereas higher than control for B. luridus and G. viscidus.⑥For the synthesis of polyphenol Oxidase by S. luridus and S. bovines in 4 strains of mycorrhiza-associated fungi were greatly higher than control, whereas higher than control for B. luridus and G. viscidus.
     4 The inoculation effect of ectomycorrhizal fungi and mycorrhizal-associated fungi on P. tabulaeformis Ectomycorrhizal fungi and mycorrhizal-associated fungi could activate soil nutrient and promote plant growth through improving root activity and nitrate reductase activity, changing root plasma membrane permeability, increasing total content of chlorophyll. these indicated that the promoting growth effect of ectomycorrhizal fungi and mycorrhizal-associated fungi on P. tabulaeformis was a comprehensive influence by above-ground and under-ground's synergistic effect. Both mycorrhizal plants and mycorrhizal plants inoculated with mycorrhizal-associated fungi produced a significantly higher total biomass, root activity, nitrate reductase activity and total content of chlorophyll than non-mycorrhizal plants. However, there was no difference in the growth of mycorrhizal plants inoculated or uninoculated with mycorrhizal-associated fungi. There was also no significant difference in non-mycorrhizal plants grown in the presence of mycorrhizal-associated fungi and that of the control plants.
引文
[1] Allen MF. The ecology of mycorrhizae[M]. New York: Cambridge University Press, 1991.
    
    [2]Agerer R. Fungal relationships and structural identity of their ectomycorrhizae[J]. Mycological Progress, 2006,5(3): 67-107.
    [3]Almeida FBDR, Cerqueira FM, Silva RDN, Ulhoa CJ, Lima AL. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production[J]. Biotechnology letters, 2007, 29(8): 1189-1193.
    [4]Abuzinadah RA, Read DJ. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi[J]. New Phytologist, 1986, 103(3): 481-493.
    [5]Arocena JM, Glowa KR, Massicotte HB, Lavkulich, L. Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in Aehorizon of Luvisol[J]. Canadian Journal of Soil Science, 1999, 79(1): 25-35.
    [6] Akhurst RJ, Smigieiski A, Mari J, Boemare N, Mourant, RG. Restriction analysis of phase variation in Xenorhabdus spp. (Enterobacteriaceae), entomopathogenic bacteria associated with nematodes[J]. Systematic and Applied Microbiology, 1992, 15(3):469-473.
    [7]Akhtar MW, Mirza AQ, ChughtaiMID. Lipase Induction in Mucor hiemalis[J]. Applied Environment Microbiology, 1980,40(2): 257-263.
    [8]Boddy L. Interspecific combative interactions between wood-decaying basidiomycetes[J]. FEMS Microbial Ecology, 2000, 31(3): 185-194.
    [9]Benhamou N, Chet I. Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction[J]. Phytopathology, 1996, 86: 405-416.
    [10]Bara MTF, Lima AL, Ulhoa CJ. Purification and characterization of an exo-β-1,3-glucanase produced by Trichoderma aspellum. FEMS Microbiology Letters, 2003, 219(1): 81-85.
    [11]Bending GD, Aspray TJ, Whipps JM. Significance of microbial interactions in the mycorrhizosphere[J]. Advances in Applied Microbiology, 2006, 60: 97-132.
    [12]Barea JM, Azco'n R, Azco'n-Aguilar C. Mycorrhizosphere interactions to improve plant fitness and soil quality[J]. Antonie van Leeuwenhoek, 2002, 81: 343-351.
    [13]Bogeat-Triboulot MB, Bartoli F, Garbaye J, Marmeisse R, Tagu D. Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings[J]. Plant and soil, 2004, 267(1/2): 213-223.
    [14]Chambers SM, Burke RM, Brooks PR, Cairney JWG. Molecular and biochemical evidence for manganese-dependent peroxidase activity in Tylosporn fibrillosa[J]. Mycological Research, 1999, 103(9): 1098-1102.
    [15]Chen D M, Taylor A F S, Burke R M, Cairney JWG. Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi[J]. New Phytologist, 2001, 152(1): 151-158.
    [16]Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P. Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes[J]. Microbial Ecology, 2007, 54(3): 567-577.
    [17]Chakravarty P, Huwang SF. Effect of an ectomycorrhizal fungus Laccaria laccatta on Fusarium damping off in Pinus bankasiana seedlings[J]. European Journal of Forest Pathology, 1991, 21: 97-106.
    [18]Frey P, Frey KP, Garbaye J, Berge O, Heulin T . Etabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir Laccaria bicolor mycorrhizosphere[J]. Environment Microbiology, 1997,63: 1852-1860.
    [19]Fracchiaa S, Godeasa A , Scervinoa JM, Sampedro I, Ocampo JA . Interaction between the soil yeast Rhodotoru lamucilainosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigasporarosea[J]. Soil Biology &Biochemistry, 2003, 35: 701-707
    [20]Founoune H, Duponnois R, Sall S, Branget I, Lprquin J, Neira M, Chotte J L. Mycorrhiza Helper Bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus albus[J]. New Phytologist, 2002, 153: 81-89.
    [21]Frey-Klett P, Michael C, Marie-Lise C, Sebastien C, Christine LR, Raaijmakers J, Maria G M, Jean-Claude P, Jean G. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads[J]. New Phytologist, 2005, 165(1), 317-328
    [22]Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited[J]. The New Phytologist, 2007, 176(1): 22-36
    [23]Gramss G, Gunther TH, Fritsche W. Spot tests for oxidative enzymes in ectomycorrhizal, woodand litter decaying fungi[J]. Mycological Research, 1998, 102(1): 67-72.
    [24]Günther TH, Perner B, Gramss G. Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.)[J]. Journal of Basic Microbiology, 1998, 38(3): 197-206.
    
    [25]Griffin D H. Chemistry of the fungal cell[M]. New York: Wiley-Liss, 1994.
    
    [26]GhoseTK. Measurement of cellulase activity[J]. Pure and Applied Chemistry, 1987, 59(2): 257-268.
    [27]Gao KX, Liu XG, Liu YH, T Li, G Wang, K. Liu. Cultural Characteristics of Trichoderma harzianum and its Inhibition to Phytophthora nicotianae[J]. Journal of Phytopathology, 2002, 150(5): 271-276.
    [28]Garbaye J. Helper bacteria: a new dimension to the mycorrhizal symbiosis[J]. New Phytologist, 1994, 128: 197-210.
    [29]Gary DB, Thomas JA, John MW. Significance of microbial interactions in the mycorrhizosphere[J]. Advances in Applied Microbiology, 2006, 60: 97-132.
    
    [30]Harley JL. The significance of mycorrhizal [J]. Mycological Research, 1989, 92: 129-139.
    [31]Hijri M, Redecher D, Petetot J C, Voigt K, Wostemeyer J, Sanders IR .Identificational and isolation of two ascomycetes fungi from spore of the arbuscular mycorrhizal fungus Scutellospora castanea[J]. Applied and Environmental Microbiology, 2002, 68(9): 4567-4573.
    [32]He XH, Horwath WR, Zasoski RJ, Aanderudand CZ, Bledsoe S. Nitrogen sink strength of ectomycorrhizal morphotypes of Quercus douglasii, Q. garryana, and Q. agrifolia seedlings grown in a northern California oak woodland[J]. Mycorrhiza, 2007, 18(1): 34-41.
    [33]Hartley, JWG, Meharg, AA. Influence of anthropogenic pollution on mycorrhizal fungal communities[J]. Environmental Pollution, 1999, 106(2): 169-182.
    [34]Hojka K, Samar SP, Tine G, Primoz S . Types of ectomycorrhiza as pollution stress indicators: case studies in Slovenia[J]. Environmental Monitoring and Assessment, 2007, 128: 31-45.
    [35]Harman GE. Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22[J]. Plant Disease, 2000, 84: 377-393.
    [36]Hammel K E. Mechanism for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi[J]. Environmental Health Perspectives, 1995, 103: 41- 43.
    
    [37]Harley JL, Smith SE. Mycorrhizal Symbiosis[M]. London: Academic Press, 1983, 1-483.
    [38]Johansson JF, Paul LR, Finlay RD. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbiology Ecology, 2004, 48: 1-13.
    [39]Joner EJ, Leyva LC, Colpaert JV. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere[J]. Environmental Pollution, 2006, 142(1): 34-38.
    [40]Kothari SK, Marschner H, Romheld V. Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere microorganisms on manganese reduction in the rhizosphere and manganese concentrations in maize[J]. New phytologist, 1991, 117: 649.
    [41]Lindahl BD, Taylor AFS. Occurrence of N-acetylhexosaminidase-encoding genes in ectomycorrhizal basidiomycetes[J]. New Phytol, 2004, 164:193-199.
    [42]Leyval CK, Haselwandter TK. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects[J]. Mycorrhizal, 1997(7): 139-153.
    [43]Leep I, Koske RE. Gigspora gigantean, parasitism of spore by fungi and actinomycetes[J]. Mycological Research, 1994, 98: 458-466.
    [44]Linderman RG. Mycorrhizal interaction with the rhizosphere microflora: the mycorrhizo sphere effect[J]. Phyto-pathology, 1988, 78(3): 366-371.
    [45]Leake JR, Donnelly DP, Boddy L. Interactions between ecto-mycorrhizal and saprotrophic fungi. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, 2002, 345-372.
    [46]Linderman RG, Marlow JL, Davis EA. Contribution of microbial associates of VA mycorrhizae to mycorrhiza effects on plant growth and health. In: Abstracts of ICOM E., Berkeley campus, California University, USA. 1996, pp 655.
    [47]Langenfeld-Heyser R, Gao J, Ducic T, Tachd P, Lu CF, Fritz E, Gafur A, Polle a. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus×canescens[J]. Mycorrhiza, 2007, 17(2): 121-131.
    [48] Manfred JG, David P, Jana R, et al. Effect of inoculation with soil yeasts on mycorrhizal symbiosis of maize[J]. Pedobiologia, 2006, 50(4): 341-345.
    [49]Mansfeld-Giese K, Larsen I, Bodker L. Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices[J]. FEMS Microbiology Ecology, 2002, 41(2): 133-140.
    [50]Mucha J, Hanna D, Edmund S, Werner A. Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi[J]. Archives of microbiology, 2006, 185(1): 69-77.
    [51]Mojtaba TY, Gholamreza Z, Elham M. Mucor hiemalis: a new source for uricase production[J]. World Journal of Microbiology and Biotechnology, 2006, 22(4): 325-330.
    [52]Mester T, Tien M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants[J]. International Biodeterioration and Biodegradation, 2000, 46: 51-59.
    [53]Murphy EA,Mitchell DT.Interactions between Tricholomopsis rutilans and ectomycorrhizal fungi in paired culture and in association with seedlings of lodgepole pine and Sitka-spruce[J].Forest Pathology,2001,31(6):331-344.
    [54]Mucha J,Dahm H,Werner A.Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi[J].Antonie van Leeuwenhoek,2007,92(1):137-142.
    [55]Marx DH.The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections,Ⅱ.Production,identification,and biological activity of antibiotics produced by Leucopaxillus cerealis var.piceina[J].Phytopathology,1969,59(4):411-417.
    [56]Marx DH,Davey CB.The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections,Ⅲ & Ⅳ[J].Phytopathology,1969,59:549-559.
    [57]Marx DH.Mycorrhizae and establishment of trees on strip-mined land[J].The Ohio Journal of Science,1975,(75)6:288-297.
    [58]Noronha EF,Kipnis A,Junqueira-Kipnis AP,Ulhoa CJ.Regulation of 36-kDa β-1,3-glucanase synthesis in Trichoderma harzianum[J].FEMS Microbiology Letters,2000,188(1):19-22.
    [59]Nygren C M R,Edqvist J,Elfstrand M,Heller G,Taylor F S.Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi[J].Mycorrhiza,2007,17(3):241-248.
    [60]Petra M,Karen B.Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize[J].Plant and Soil,2003,251:279-289.
    [61]Pitson S M,Seviour R J,McDougall B M.Noncellulolytic fungal β-glucanases:their physiology and regulation[J].Enzyme and Microbial Technology,1993,15(3):178-192.
    [62]Redlak K,Dahm H,Ciesielska A,Strzelczyk E.Enzymatic activity of ectendomycorrhizal fungi[J].Biology and Fertility of Soils,2001,33(1):83-90
    [63]Ren L,Li G,Han YC,Jiang DH,Huang HC.Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity of beta-1,3-glucanase of this mycoparasite[J].Biological control,2007,43(1):1-11.
    [64]Rasanayagam S,Jeffries P.Production of acid is responsible for antibiosis by some ectomycorrhizal fungi[J].Mycological Research,1992,96:971-976.
    [65]Richter DL,Zuellig TR,Bagley ST.Effects of red pine(Pinus resinosa Ait.)mycorrhizoplane-associated actinomycetes on in vitro growth of ectomycorrhizal fungi[J].Plant and Soil,1989,115:109-116.
    [66]Rambelli A.The rhizosphere of mycorrhizae.In:G.L.Marks and T.T.koslowski.Ectomycorrhizae.New York:Academic Press,1973,pp 299-343.
    [67]Smith SE,Read DJ.Mycorrhizal symbiosis[M].New York:Academic,1997.
    [68]Simard SW,Jones MD,Durall DM.Carbon and nutrient fluxes within and between mycorrhizal plants[A].Mycorrhizal Ecology[C].Berlin:Springer-Verlag,2002.33-74.
    [69]Sreedhar L,Kobayashi D Y,Bunting T E,Hillman BI,Belanger FC.Fungal proteinase expression in the interaction of plant pathogen Magnaporthe poae with its host[J].Gene,1999,235(1/2):121-129.
    [70]Tominaga Y.Studies on the life history of Japanese pine mushroom,Armillaria matsutake to etimai[J].Bulletin of the Hiroshima Agricultural College,1963,2:105-145.
    [71]Tang M,Zhang RQ,□Chen H,Zhang HH,Tian ZQ.Induced hydrolytic enzymes of ectomycorrhizal fungi against pathogen Rhizoctonia solani[J].Biotechnology Letters,2008,30:1777-1782.
    [72]Turnau K,Pryzybylowics WJ,Mesjasz PJ.Heavy metal distribution in Suillus luteus mycorrhizas-as revealed by micro-PIXE analysis[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2001,181(1):649-658
    [73]Tewari N,Vasudevan P,Guha B K.Study on biosorption of Cr(Ⅵ) by Mucor hiemalis[J].Biochemical Engineering Journal,2005,23:185-192.
    [74]Timonen S,Jorgensen KS,Haahtela K,Sen R.Bacterial community structure at deffened locations of Pinus sylvestris-Suillus bovinus and Pinus sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat[J].Canadian Journal of Microbiology,1998,44:499-513.
    [75]Vigo C,Norman JR,Hooker JE.Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci[J].Plant Pathology,2000,49:509-514.
    [76]Vaario LM,Xing ST,Xie ZQ,ZM Lun,X Sun,YH Li.In situ and in vitro colonization of Cathaya argyrophylla(Pinaceae) by ectomycorrhizal fungi[J].Mycorrhiza,2006,16(2):137-142.
    [77]Whipps JM.Prospects and limitations for mycorrhizas in biocontrol of root pathogens[J].Canadian Journal of Botany,2004,82:1198-1227.
    [78]Werner A,Zadworny M,Idzikowska K.Interaction between Laccaria laccata and Trichoderma virens in co-culture and in the rhizosphere of Pinus sylvestris grown in vitro[J].Mycorrhiza,2002,12:139-145.
    [79]Werner A,Zadworny M.In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris[J].Mycorrhiza,2003,13:41-47.
    [80]Wallander H,Nylund JE,Sundberg B.Ectomycorrhiza and nitrogen effects on root IAA:results contrary to current theory[J].Mycorrhiza,1992,1(2):91-92.
    [81]Xavier JC,Germida JJ.Bacteria associated with Glomus clarum spore influence mycorrhizal activity[J].Soil Biology and Biochemistry,2003,35(3):471-478.
    [82]Yedidia I,Benhamou N,KaPulnik Y,Chet I.Induction and accumulation of PR proteins activity during early stages of root colonization by the microparasite Trichoderma harzianum strain T203[J].Plant Physiology and Biochemistry,2000,38(11):863-873.
    [83]Yamada A,Ogura T,Ohmasa M.Cultivation of mushrooms of edible ectomycorrhizal fungi associated with Pinus densiflora by in vitro mycorrhizal synthesis Ⅱ.Morphology of mycorrhizas in open-pot soil[J].Mycorrhiza,2001,11:67-81.
    [84]Yamaji K,Ishimoto H,Usui N,Mori S.Organic acids and water-soluble phenolics produced by Paxillus sp.60/92 together show antifungal activity against Pythium vexans under acidic culture conditions[J].Mycorrhiza,2005,15:17-23.
    [85]Zadworny M,Werner A,Idzikowska K.Behaviour of the hyphae of Laccaria laccata in the presence of Trichoderma harzianum in vitro[J].Mycorrhiza,2004,14(6):401-405.
    [86]Zadworny M,Smolinski DJ,Idzikowska K.Ultrastructural and cytochemical aspects of the interaction between the ectomycorrhizal fungus Laccaria laccata and the saprotrophic fungi,Trichoderma harzianum and T.virens[J].Biocontrol Science and Technology,2007,17(9-10):921-932.
    [87]樊荣,白淑兰,刘勇,周晶,董智.大青山外生菌根真菌资源生态研究[J].生态学报,006,26(3):837-841.
    [88]巴尼特,H L,亨特B B著,沈崇尧译.半知菌属图解[M].北京:科学出版社,1977.
    [89]陈瑞蕊,林先贵,尹睿,施亚琴.有机污染土壤中菌根的作用[J].生态学杂志,2005,24(2):176-180.
    [90]陈辉,袁锋.秦岭华山松大小蠹生态系统综合治理[M].北京:中国林业出版社,2000.
    [91]陈桂梅,李守萍,张海涵,高瑞霞,徐辉,唐明.菌根伴生真菌对外生菌根真菌生长及其中性蛋白酶活性的影响[J].西北农林科技大学学报(自然科学版),2009,37(5):204-210.
    [92]郭秀珍,毕国昌.林木菌根及应用技术[M].北京:中国林业出版社,1989.
    [93]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997.
    [94]顾向阳.VA菌根真菌Glomus rnosseae对棉花根区微生物量和生物量的影响[J].生态学杂志,1994,13(2):7-11.
    [95]高克祥,刘晓光,郭润芳,高宝嘉,朱天博.木霉菌对五种植物病原真菌的重寄生作用[J].山东农业大学学报(自然科学版),2002,33(1):37-42.
    [96]花晓梅.林木菌根研究[M].北京:中国科学技术出版社,1995,1-20.
    [97]黄昌勇.土壤学[M].中国农业出版社,2000.
    [98]黄艺,黄志基,范玲,赵曦.铆钉菇对重金属的耐性及其对油松分泌TOC的影响[J].农业环境科学学报,2006a,25(4):875-879.
    [99]黄艺,赵曦,敖小兰.4种外生菌根真菌对滴滴涕的耐受性及生理响应[J].环境科学研究,2006b,19(4):36-41.
    [100]黄艺,杨青,敖晓兰.外生菌根真菌对五氯芬的耐受性及生理响应[J].环境科学学报,2008,28(10):2078-2083.
    [101]贺小香,谭周进,肖启明,陈力力.外生菌根的功能及环境因子的关系[J].中国生态农业学报,2007,15(2):201-204.
    [102]蒋家淡,林延生.菌根生物技术应用现状研究进展[J].江西农业大学学报,2001,23(2):216-219.
    [103]龙良鲲,姚青,艾云灿,朱红惠.丛枝菌根真菌伴生细菌的研究进展[J].生态学报,2007,21(12):5345-5351.
    [104]栾庆书.几种外生菌根菌对土传病原菌的桔抗作用[J].辽宁林业科技,1992(6):45-49.
    [105]栾庆书,李立.中国外生菌根研究的20年成就[J].辽宁林业科技,2000,(6):36-39.
    [106]刘润进,刘智军.中国菌根研究40年回顾展望[J].植物病理学报,1998,28(3):201-208.
    [107]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000.
    [108]刘润进,陈应龙.菌根学[M].北京:科学技术出版社,2007.
    [109]刘云龙,何永宏,张旭东.哈茨木霉对辣椒生长的影响[J].云南农业大学学报,2002,17(4):345-346.
    [110]李海波,吴学谦,魏海龙,付立忠,吴庆其,陈奕良,范良敏,柳青,吴春玲,吴锡鹏.浙江丽水地区外生菌根菌资源凋查初报[J].中国食用菌,2005,24(5):10-14.
    [111]李梅云,谭丽华,方敦煌,李天飞,王革,刘开启.哈茨木霉的培养及其对烟草疫霉生长的抑制研究[J].微生物学通报,2006,33(6):79-83.
    [112]李淼,产祝龙,檀根甲,丁克坚,高智谋,承河元.木霉菌防治植物真菌病害研究进展[J].生物技术通讯,2009,20(2):286-290.
    [113]陆雅海,张福锁.根际微生物研究进展[J].土壤,2006,38(2):113-121.
    [114]梁宁,郭良栋,马克平.菌根真菌在生态系统中的作用[J].植物生态学报,2002,26(6):
    [115]廖晓初.氮源对外生菌根生长、氮吸收和硝酸还原酶活性的影响[D].西南大学,2006.
    [116]雷增普,金均然,王昌温.外生菌根真菌对植物根部病害病原菌拮抗作用的研究[J].林业科学,1989,25(6):502-508.
    [117]谢一青,李志真,杨宗武.pH、盐浓度及铝离子对菌根菌生长的影响[J].江西农业大学学报(自然科学版),2002,24(2):204-207.
    [118]卯晓岚.中国大型真菌[M].郑州:河南科技出版社,2000.
    [119]潘超美,郭庆荣,邱桥姐,黄湘兰.VA菌根真菌对玉米生长及根际土壤微生态环境的影响[J].土壤环境,2000,9(4):304-306.
    [120]宋勇春,冯固,李小林.不同磷源对红三叶草根际和菌根际磷酸酶活性的影响[J].应用生态学报,2003,14(5):781-784.
    [121]盛江梅,吴小芹.菌根真菌植物根际微生物互作关系研究[J].西北林学院学报,2007,22(5):104-108.
    [122]吴小芹,孙民琴.七株外生菌根真菌三种松苗菌根的形成能力[J].生态学报,2006,(26)2:4186-4191.
    [123]王宜磊,邓振旭.彩绒革盖菌CV-8漆酶活性的初步研究[J].微生物学杂志,1998,18(4):60-62.
    [124]王宜磊,刘兴坦.彩绒革盖菌漆酶及多酚氧化酶活性研究[J].生物技术,2000,10(6):15-18.
    [125]吴小芹,马磊.外生菌根真菌产生植物激素差异及其NL-895杨生长的关系[J].林业科学,2008,44(7):43-49.
    [126]王彗中,赵培洁.有机肥在马铃薯上的应用[J].江西农业学报,2002,14(1):41-43.
    [127]魏景超.真菌鉴定手册[M].上海:上海科技出版社,1979.
    [128]徐超,吴小芹.菌根化马尾松对干旱胁迫的响应及其内源多胺的变化[J].西北植物学报,2009,29(2):0296-0301.
    [129]许美玲,孙军德,朱教君,康宏樟.树木外生菌根真菌多样性研究方法进展[J].土壤通报,2005,36(6):969-974.
    [130]薛小平,张深,李海涛,陈吉,黄建国.磷对外生菌根真菌松乳菇和双色蜡蘑草酸、氢离子和磷酸酶分泌的影响[J].菌物学报,2008,27(2):193-200.
    [131]于富强,纪大干,刘培贵.云南外生菌根真菌分离培养研究[J].植物研究,2003,23(1):66-71.
    [132]俞苓,刘民胜,陈有容.杏鲍姑液体培养中胞外酶活性变化.食用菌,2003(1):7-8.
    [133]闫伟,韩秀丽,白淑兰,邵东华.虎榛子几种菌根苗抗旱机制的研究[J].林业科学,2006,12(42):73-76.
    [134]朱教君,徐慧.外生菌根菌森林树木的相互关系[J].生态学杂志,2003,22(6):70-76.19(4):76-80.
    [135]赵志鹏,郭秀珍.外生菌根真菌同立枯丝核菌重寄生关系的研究[J].微生物学报,1989,29(3):170-173.
    [136]朱惠红,姚青,李浩华,羊宋贞.丛枝菌根真菌对番茄根系酚类物质和青枯菌种群数量的影响[J].微生物学通报,2004,31(1):125.
    [137]中国科学院微生物研究所.常见常用真菌[M].北京:科学出版社,1978.
    [138]周生亮,陈双林,房兴堂,蒋虹,魏志文.薯蓣内生真菌的分离及其抑制植物病原真菌的活性[J].江苏农业科学,2007,4(4):64-67.
    [139]周德庆.微生物学实验手册[M].上海:上海科技出版社,1986.
    [140]周建朝,韩晓日.甜菜根际磷酸酶的研究现状展望[J].中国糖料,2004,1:35-38.
    [141]周玉芝,齐玉臣,白育红.外生菌根真菌对植物根病原菌拮抗作用的研究[J].微生物学杂志, 1991,1:14-18.
    [142]周崇莲,齐玉臣.外生菌根植物营养[J].生态学杂志,1993,12(1):37-44.
    [143]张淑香,高子勤,刘海玲.连作障碍根际微生态研究土壤酚酸物质及其生物学效应[J].应用生态学报,2000,11(5):741-744.
    [144]张海涵.林木菌根真菌土壤微生物相互关系的研究[D].陕西杨凌:西北农林科技大学,2008.
    [145]张茹琴.4株外生菌根真菌立枯丝核菌的相互作用及诱导水解酶的关系[R].中国陕西杨凌:中国植物病理学会.2007.
    [146]张茹琴.秦岭外生菌根真菌多样性及其提高油松抗猝倒病的机制[D].西北农林科技大学,2008.
    [147]曾华兰,叶鹏盛.哈茨木霉T23对花生的促生增产作用[J].云南农业大学报,2005,20(1):145-146.
    [148]朱丽霞,章家恩,刘文高.根系分泌物根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    [149]张立军.植物生理学实验教程[M].北京:中国农业大学出版社,2007.
    [150]张志良,瞿伟菁.植物生理学实验指导(第3版)[M].高等教育出版社,2003