典型极端天气现象的遥感监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
典型极端天气现象遥感监测方法的研究为准确监测典型极端天气现象提供技术支持,可防止和减少因极端天气造成的事故和损失,对我国生态环境建设和可持续发展有着重要的现实意义。本课题来源于“耦合BRDF模型的城市地区气溶胶遥感反演模型与方法研究”(40701112),“华北区域气溶胶光学厚度卫星遥感反演研究”(200906),“北京生态环境多源卫星遥感监测研究”(200730)。本文以MODIS和CBERS数据为主要数据源,针对雾、霾、沙尘这三种典型极端天气现象的特征,使用单通道法及通道组合方法构建了监测模型,实现了典型极端天气现象的遥感监测。
     本文主要进行了以下方面的研究:
     1.为了说明典型极端天气现象遥感监测的可行性,使用6S模型模拟了不同能见度及水汽含量条件下,土壤、植被、水体等典型下垫面背景卫星反射率的变化;并通过查阅大量文献资料,归纳总结了雾、霾、沙尘粒子的物理特性以及物理特性对其光谱特性的影响。
     2.通过分析云与雾、霾、沙尘的反射率与亮度温度的差异,提出了新的用于极端天气条件下的云识别方法,并与MOD35云掩膜产品进行了对比,结果表明,本文提出的云识别方法在识别云与雾、霾、沙尘等象元方面具有更高的准确性。
     3.综合利用地基监测数据与MODIS数据,基于极端天气对应象元、地表象元、云象元反射率及亮度温度的差异,使用单通道法及通道组合方法构建了沙尘、雾、霾的遥感监测模型,以2008,2009年发生在我国内蒙古及中东部城市的雾、霾、沙尘天气为例,实现了云识别及雾、霾、沙尘监测。
     4.综合利用地基监测数据与CBERS数据,基于沙尘象元、地表象元、云象元反射率及亮度温度的差异,使用单通道法及通道组合方法构建了沙尘监测模型,以2006,2007年发生在我国内蒙古境内的两次沙尘天气为例,实现了云识别及沙尘监测。
     5.使用MICAPS资料验证了卫星遥感监测的雾、霾、沙尘结果。
     实验结果表明本文提出的监测方法能较精确地提取雾、霾、沙尘信息,实现了雾、霾、沙尘与云、下垫面背景的分离以及雾、霾、沙尘之间的分离。
The study on the method for monitoring the typical extreme weather phenomenon by remote sensing provides a technical support to monitor them exactly, so it can prevent and reduce the accident and loss caused by the typical extreme weather phenomenon, having practical significance to ecological environment construction and sustainable development. This paper originates from "The study on aerosols inversion model and method by remote sensing in the city based on coupling BRDF model" (40701112), "The study on inversing aerosols optical depth by remote sensing in the north China regional" (200906), "The study on monitoring ecological environment of Beijing by multisource satellite remote sensing" (200730).The MODIS and CBERS data are main data sources in this paper. The monitoring models have been constructed based on the characteristics of fog, haze and dust storm to extract the areas of fog, haze and dust storm.
     In this paper, study has been made as following:
     1. In order to show the feasibility of monitoring the typical extreme weather phenomenon by remote sensing,6S model has been used to simulate the change of soil、vegetation and water satellite reflectance in different visibility and water vapor content. A lot of literatures have been read to inductive and summarize the physical characteristics of fog, haze and dust storm and analyze the influence to spectral properties.
     2. From the reflectance and brightness temperature difference among cloud, fog, haze and dust storm, a new cloud recognition method used under the typical extreme weather phenomenon has been proposed. It has been compared with the cloud mask product MOD35.The result shows the cloud recognition method in this paper can recognize cloud more accurately when the typical extreme weather phenomenon happen.
     3. The foundation monitoring data and MODIS data have been used to find the reflectance and brightness temperature difference among cloud, fog, haze, dust storm and land. The single channel method and channel combination method have been used to construct models for monitoring fog, haze and dust storm. Examples have been given, which happened at Inner Mongolia and the middle-east cities of China in 2008, 2009 year. The model has been used to recognize cloud and monitor fog, haze and dust storm.
     4. The foundation monitoring data and CBERS data have been used to find the reflectance and brightness temperature difference among cloud, dust storm and land. The single channel method and channel combination method have been used to construct models for monitoring dust storm. Two examples have been given, which happened at Inner Mongolia in 2006, 2007 year. The model has been used to separate dust storm from cloud and land.
     5. The software of MICAPS has been used to verify the result of monitoring fog, haze and dust storm by remote sensing.
     The result shows that the monitoring method proposed in this paper can be used to extract the areas of fog, haze and dust storm more accurately, making it become true to separate fog, haze and dust storm from cloud, land and make the three typical extreme weather separated from each other.
引文
1.胡宜昌,董文杰,何勇.21世纪初极端天气气候事件研究进展[J].地球科学进展,2007,22(10):1066-1075.
    2.中国气象局.地面气象观测规范[M].北京:气象出版社,2002.
    3.吴兑.关于霾与雾的区别和灰霾天气预警的讨论[J].气象,2004,31(4):3-7.
    4.刘爱君,杜尧东,王惠英.广州灰霾天气的气候特征分析[J].气象,2004,30(12):68-71.
    5.方宗义,朱富康,江吉喜,等.中国沙尘暴研究[M].北京:气象出版社,1997.
    6.Eyre JR,Brownscombe J L,Allam R J.Detection of fog at night using Advanced Very High Resolution Radiometer(AVHRR) imagery[J].Meteorology Magazine,1984,113:266-271.
    7.Ellrod GP.Advance in the detection and analysis of fog at night using GOES multi-spectral infrared imagery[J].Weather Forecasting,1995,10(3):606-619.
    8.Bendix J,Thies B,Cemrkar J.Fog detection with Terra-MODIS and MDG-SEVIRI[C].Proceedings of the 2003 Meteorological Satellite Conference,Darmstadt,2003:427-435.
    9.刘健,许健民,方宗义.利用NOAA卫星的AVHRR资料试分析云和雾顶部粒子的尺度特征[J].应用气象学报,1990,10(1):28-33.
    10.居为民,孙涵,张忠义,等.卫星遥感资料在沪宁高速公路大雾监测中的初步应用[J].遥感信息,1997(3):25-27.
    11.李亚春,孙涵,李湘阁,等.用GMS-5气象卫星资料遥感监测白天雾的研究[J].南京气象学院学报,2001,24(3):121-129.
    12.孙涵,孙照渤,李亚春.雾的气象卫星遥感光谱特征[J].南京气象学院学报,2004,27(3):289-301.
    13.马慧云,李德仁,等.基于MODIS数据的雾光谱特性研究[J].武汉大学学报信息科学版,2007,32(6):507-509.
    14.周旋,周晓中,吴耀平,等.利用MODIS数据监测夜间雾[J].武汉大学学报信息科学版,2008,33(6):581-583.
    15.Malm WC.Characteristics and origins of haze in the continental United States [J].Earth-Science Reviews,1992,33(1):1-36.
    16.Sisler James F,Malm William C.The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States[J].Atmospheric Environment,1994,28(5):851-862.
    17.Kikuo Okada,et al.The mixture state of individual aerosol particles in the 1997Indonesian haze episode[J].Aerosol Science,2001,32:1269-1279.
    18.罗金芳.几种常见视障碍类天气现象的辨析及观测要点[J].湖北气象,2004,(2):31-33.
    19.吴兑.再论相对湿度对区别都市霾与雾(轻雾)的意义[J].广东气象,2006,2(1):9-13.
    20.谭吉华.广州灰霾期间气溶胶物化特性及其对能见度影响的初步研究[D].中国科学院研究生院博士学位论文,2007.
    21.马国欣,薛永祺,李高丰.珠江三角洲地区的灰霾监控与卫星遥感[J].科技导报,2008,26(16):72-76.
    22.C.Y.Ji.Haze reduction from the visible bands of LANDSAT TM and ETM+ images over a shallow water reef environment[J].RemoteSensingofEnvironment,2008,112:1773-1783.
    23.Shenk W E,Curian R J.The detection of dust storms over land and water with satellite visible and infrared measurements[J].Monthly Weather Review,1974,102:820-837.
    24.Steven A.Ackerman.Using the radiative temperature difference at 3.7 and 11μm to track dust outbreaks[J].Remote Sensing Environment,1989,27:129-133.
    25.Ackerman.S.A.Remote sensing aerosols using satellite infrared observations[J].Geophysical research letters,1997,102:17069-17079.
    26.J.K.Roskovensky,K.N.Liou.Differentiating airborne dust from cirrus clouds using MODIS data[J].Geophysical research letters,2005,32:1-5.
    27.John J.Qu,Menas Kafatos.Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements[J].Geosciences and Remote Sensing letters,2006,3(4):484-486.
    28.郑新江,陆文杰,罗敬宁.气象卫星多通道信息监测沙尘暴的研究[J].遥感学报,2001,5(4):300-306.
    29.范红,陈桂林.应用米氏理论选择气象卫星探测沙尘暴的波段[J].遥感技术与应用,2004,19(4):271-275.
    30.郭铌,梁芸.利用MODIS资料定量判识沙尘暴方法研究[J].干旱气象,2006,2(1):1-6.
    31.厉青,王桥,王文杰,等.基于Terra/MODIS的沙尘暴业务化遥感监测研究[J].国土资源遥感,2006,1:43-45.
    32.刘三超,柳钦火,高懋芳.利用Terra和Aqua双星MODIS数据协同研究沙尘暴[J].武汉大学学报信息科学版,2006,31(12):1051-1054.
    33.赵英时,等.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    34.李亚春,夏德深,孙涵.基于分形特征的云雾遥感图像分离方法[J].计算机应用研究,2006,4:168-171.
    35.王瑞.激光在雾媒质中的传播衰减特性研究[D].西安电子科技大学硕士学位论文,2007.
    36.Birch,M.E.and Cary,R.A.Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust[J].Aerosol Science and Technology,1996,25:221-241.
    37.L.J Ippolito.Propagation effects handbook for satellite system design[M].NASA Reference Publication,1989.
    38.W.Viezee,R.Lewis.能见度测量技术,大气边界探测[M].气象出版社,1998.
    39.李红林,李万彪.MODIS近红外资料反演大气水汽总含量[J].北京大学学报(自然科学版),2008,44(1):121-128.
    40.车慧正,张小曳.石广玉,等.沙尘和灰霾天气下毛乌素沙漠地区大气气溶胶的光学特征[J].中国粉体技术,2005,11:122-125.
    41.陈伟,周红妹,袁志康,等.基于气象卫星分形纹理的云雾分离研究[J].自然灾害学报,2003,12(2),133-139.
    42.Kuo-Nan Liou著,周诗健,等译.大气辐射导论[M].北京:气象出版社,1985.
    43.陈林.EOS/MODIS资料的数据处理方法及其在白天低云大雾监测中的应用[D].南京信息工程大学硕士研究生学位论文,2006.
    44.刘玉洁,杨忠东.MODIS遥感信息处理原理与算法[M].北京:气象出版社,2001.