γ-干扰素对铜绿假单胞菌生物膜形成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜(Biofilm)是细菌和其分泌的胞外基质在物体表面形成的高度组织化的多细胞结构,它是细菌生长过程中为适应生存环境而形成的一种与浮游细胞相对应的存在形式。一旦形成生物膜,细菌将具有极强的抗生素耐药性(比浮游细菌高100-1000倍)和逃避机体免疫系统攻击的能力。根据美国NIH的调查公告,80%以上的细菌性感染与生物膜有关。因此,如何防治细菌生物膜已成为人类面临的巨大挑战。
     铜绿假单胞菌(Pseudomonas aeruginosa)是一种常见条件致病菌,可引起多种感染,其中呼吸道感染最为常见,近来铜绿假单胞菌的发病率呈明显上升趋势,且耐药性日趋严重。铜绿假单胞菌具有极强的环境适应能力和生物膜形成能力。宿主与病原菌的相互作用是医学和微生物学领域研究的前沿和热点,目前绝大多数研究集中在宿主如何感知病原菌的侵入和调节免疫系统清除病原菌方面。然而,关于病原体如何感知宿主免疫系统并相应改变自身表型逃脱免疫系统攻击的研究却很少。最近有人报道,铜绿假单胞菌能够利用其外膜蛋白OprF感知宿主细胞产生的免疫因子γ-干扰素,从而激活自身的群体感应系统来促进毒性因子的表达。本论文旨在研究铜绿假单胞菌是否能感知γ-干扰素促进其生物膜的形成,从而产生免疫逃逸。
     本文建立了静态和动态铜绿假单胞菌生物膜模型,研究了γ-干扰素对铜绿假单胞菌生物膜形成的影响。结果表明,γ-干扰素能够显著地促进铜绿假单胞菌生物膜的形成。随着γ-干扰素浓度、作用时间和菌体密度的不同,对铜绿假单胞菌生物膜形成的作用也不同。在静态生物膜模型中,当γ-干扰素浓度为10ng/mL、处理6h和菌液OD600为1.8时,γ-干扰素对铜绿假单胞菌生物膜形成的促进作用最强,达到40%;在动态生物膜模型中,γ-干扰素浓度为10ng/mL和作用时间为72h时,效果最明显,生物膜的生物量和平均厚度分别增加了3倍和2倍。为了排除细菌生长代谢因素对生物膜形成的影响,我们检测了γ-干扰素对铜绿假单胞菌浮游菌生长的影响。结果证明,铜绿假单胞菌的生长代谢不受γ-干扰素的影响。
     研究已发现,生物膜的形成和成熟与细菌群体感应系统有关。群体感应是细菌根据细胞密度变化进行基因表达调控的一种群体行为。为了探讨γ-干扰素促进铜绿假单胞菌生物膜形成的机制,利用群体感应系统rhlI突变菌株PDO100、lasI突变菌株PAO-JP1和rhlI / lasI双突变菌株PAO-MW,分别检测了γ-干扰素对其生物膜形成的影响。结果证明,γ-干扰素主要通过rhl群体感应系统促进铜绿假单胞菌生物膜形成。同时,γ-干扰素对铜绿假单胞菌外膜蛋白OprF缺失菌株的生物膜形成没有影响,表明OprF是γ-干扰素的受体。
     综上所述,在病原菌与宿主之间的相互作用中,铜绿假单胞菌能够利用外膜蛋白OprF感知宿主细胞产生的γ-干扰素,激活自身的rhl群体感应系统,促进生物膜的形成,从而抵御宿主免疫系统的攻击,形成一种自身保护机制。本文从病原体的角度,阐明了病原菌如何根据宿主免疫系统的变化来调节自身的生存方式和产生免疫逃逸,为深入了解病原菌的致病机理和有效地防治细菌生物膜感染创造了条件。
Biofilms are highly structured, surface attached communities of bacterial cells enclosed in self-produced polymeric matrix. Their formation reflects an adaptive behavior that enables the bacterial cells to survive in the hostile environment. Biofilm formation by opportunistic pathogens is devastating because the bacteria in these structured communities can withstand host immune responses, and become more resistant to antibiotics (100-1000 folds higher than planktonic bacteria). According to the public announcement of National Institutes of Health (NIH), biofilms may be involved in up to 80 percent of human infections. Consequently, controlling of biofilms will play a crucial role in cure of bacterial infections.
     Pseudomonas aeruginosa, a versatile Gram-negative opportunistic human pathogen, is the most prevalent bacterial pathogens in infectious diseases, such as respiratory tract infections, bacteremia, pneumonia, urinary tract infections, cystic fibrosis, infections of burn, catheter infections and infections of heart valve. P. aeruginosa has shown multi-drug resistance that always causes failure in clinical therapy and persistent and chronic infections. So, infections with P. aeruginosa are a major health problem worldwide, being associated with significant morbidity and mortality. The host-pathogen interaction has become a hot-spot for research of medicine and microbiology. At present, most of the studies are involved in how hosts sense pathogen’s invading and regulate immune system to clear the bacteria away, whereas it is not clear how pathogens sense host immune response and alter itself phenotype to evade immune system. More recently, it is reported that IFN-γbinds to an outer membrane protein in P. aeruginosa, OprF, resulting in the expression of a quorum-sensing dependent virulence determinant, the PA-I lectin by triggering QS system of itself. This study is aimed to clarify whether P. aeruginosa can sense IFN-γand enhance the formation of biofilm to escape from host defense.
     To determine whether IFN-γis capable of influcening P. aeruginosa biofilm formation, biofilm assay of P. aeruginosa under static and dynamic culture condition with or without IFN-γwere carried out. The results indicated that IFN-γcan promote the formation of P. aeruginosa biofilm dramatically. Furthermore, there was distinct influence on P. aeruginosa biofilm formation with various concentrations of IFN-γ, incubation time and cell densities. The results of the static biofilm assay indicated that the formation of P. aeruginosa biofilms was increased by 40% when the concention of IFN-γwas 10 ng/ml, cultured 6 hours and at high cell densities (OD600=1.8). And in the dynamic flow-cell conditions, significant enhancement of biofilm development, 4.0-fold as assessed by total biomass, 3.0-fold as assessed by average thickness, was observed when cultivated with 10 ng/ml of IFN-γfor 72 h. Moreover, IFN-γin concentrations used for this study had no effect on growth of P. aeruginosa PAO1. Therefore, IFN-γworked specifically on biofilm formation and not indirectly by disruption of primary metabolic functions.
     Previous studies have suggested that quorum-sensing (QS) is involved in both the initiation and the maturation of P. aeruginosa biofilm. Quorum-sensing system is the behavior of the entire community that tune gene expression and regulation according to bacteria cell densities, which is widespread and involves complex networks that serve as fine-tuner of the performance of diverse behaviors. To further investigate the mechanism underlying the effect of IFN-γon the formation of P. aeruginosa biofilm, PAO1 and three strains with mutations in different QS system (PAO-JP1, PDO100, PAO-MW) were used to study the distinction among the effect of IFN-γon their biofilm formation in this study. The results showed that this influence was abrogated in strains PDO100 and PAO-MW, which are rhlI-deficient mutants of P. aeruginosa PAO1, suggesting that the rhl QS system plays a crucial role in biofilm formation response to exogenous IFN-γ. Furthermore, the results showed that IFN-γhad no effect on the formation of oprF-deficient strain biofilm, suggesting that OprF is the receptor of IFN-γ.
     In conclusion, P. aeruginosa can sense the IFN-γproduction of host cells using the major outer-membrane protein OprF specifically, and then IFN-γ-OprF signal activate rhl QS system to promote the formation of P. aeruginosa biofilm. This study clarified the mechanism underlying pathogens how to sense host immune response and alter itself lifestyle to evade immune system, which may provide new insight into the mechanisms of P. aeruginosa chronic infection and may also provide a new therapeutic strategy.
引文
1. Rumbaugh K.P.,Gdswold J.A. Contribution of quorum sensing to the virulence Of Pseudomonas aeruginosa in burn wound infections. Infect.Immun.1999,67:5854-5862.
    2. Van Delden C., Iglewski B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg.inffect.Dis.1998,4:551-560.
    3.徐延模,杨薇,赵和平.6543例住院患者医院感染的临床调查分析[J].中华医院感染学杂志,2002,12(1):27-28.
    4.董崴,古东东,鲍燕燕。等.医院细菌耐药性结果分析[J].中华医院感染学杂志,2001,11(4):314-315.
    5. Costerton JW.Introduction to biofilm. Int J Antimicrob Agents, 1999, 11:217-221.
    6. Sutherland IW. The biofilm matrix--an immobilized but dynamic microbial environment. Trends Microbiol, 2001, 9:222-227.
    7. Branda SS, Vik A, Lisa F, Roberto K. Biofilms: the matrix revisited. Trends Microbiol, 2005, 13: 20-26.
    8. Lawrence JR, Swerhone GD, Leppard GG, Araki T, Zhang X, West MM, Hitchcock AP. Scanning transmission X-Ray, laser scanning, and transmission electron microscopy Mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol, 2003, 69: 5543-5554.
    9. Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol, 2004, 186: 4457- 4465.
    10. Costerton JW,Lewandowski Z,Caldwell DE,etal. Microbial Biofilms[J]. Annu Rev Microbiol,1995,49(5):711- 45.
    11. Stenberg C,Christenson BB,Johnason J,etal. Distribution of bacterial growth activity in flow chamber biofilm[J].APPI Environ Microbiol,1999,65(6):4108.
    12.小林宏行.细菌菌膜的基础与临床[J].中国临床药理学杂志,1999,15(4):299-307.
    13.瞿涤.病原性生物膜及持续性感染[J].国外医学微生物学分册,2001,24(6):1- 4.
    14. Costerton JW ,Stewart PS,Greenberg EP.Bacterial biofilms:a common cause of persistent infections[J].Science.1999,284(5418):1318-1322.
    15. Anders Plata StaPPer,Giri Narasimhan,Kalai Mhateel,etal. Alginate Production aeffects Pseudomonas aeurginosa biofilm development and architecture,but is not essential for biofilm formation. J.Med Microbiol.20O4, 53:679-690.
    16. KaraD Jaekson,Melissa Starkey,DnaielJ.Woznikal,etal. Identification of Psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeurginosa PAO1 biofilm formation. J.Bacterial.2004;186(14):4466- 4475.
    17. SJ Aarons, IW Sutherland, AM Chakrabarty, etal. A novel gene, algK, from the alginate biosynthesis cluster of Pseudomonas aeruginosa. Microbiology.1997:143:641-52.
    18. Dnaiel J Woznika,Timna J O Wyckoff,Matthew R Parsek,etal. Alginate is not a significant component of the extracellular Polysaccharide matrix of PA14 and PAO1 Pseudomonas aeurginosa biofilms.Microbiology.2003:100(13):7907-7912.
    19. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol, 2000, 54: 49-79.
    20. Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol, 2001, 67:5608-5613.
    21. Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol, 2004, 70: 7418-7425.
    22. Picioreanu C, van Loosdrecht MC, Heijnen JJ. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng, 2001, 72: 205-218.
    23. Xavier JD, Picioreanu C, van Loosdrecht MC. A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng, 2005, 91: 651-669.
    24. Allison DG, Ruiz B, San Jose C, Jaspe A, Gilbert P. Extracellular products as mediators of theformation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett, 1998, 167: 179-184.
    25. Lee SF, Li YH, Bowden GH. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun, 1996, 64: 1035-1038.
    26. Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol, 2002, 29: 361-367.
    27. Parsek MR, Greenberg, EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 2005, 13: 27-33.
    28. Kjelleberg S, Molin S. Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol, 2002, 5: 254-258.
    29. Spoering AL, Gilmore MS. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol, 2005, 11: 513-518.
    30. Teresa R. de Kievit, Barbara HI. Bacterial quorum sensing in pathogenic relationships. Infect Immun, 2000, 68: 4839-4849.
    31. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol, 2004, 186: 692-698.
    32. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus Biofilms. J Bacteriol, 2004, 186: 1838-1850.
    33. Marketon MM, Glenn SA, Eberhard A, Gonzalez JE. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol, 2003, 185: 325-331.
    34. Suntharalingam, Prashanth, Cvitkovitch, Dennis G. Quorum sensing in streptococcal biofilm formation. Trends Microbiol, 2005, 13: 3-6.
    35. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol, 2002, 68:1754-9175.
    36. Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. Quorum-Sensing Mutations Affect Attachment and Stability of Burkholderia cenocepacia Biofilms. Appl Environ Microbiol, 2005, 71: 5208-5218.
    37. Juhas M, Eberl L, Tummler B. Quorum sensing: the power of cooperation in the world of Pseudomonas. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Environ Microbiol, 2005, 7: 459-471.
    38. Glessner A, Smith RS, Iglewski BH, Robinson JB. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol, 1999, 181: 1623-169.
    39. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol.1997, 179: 5756-5767.
    40. Wall D, Kaiser D. Type IV pili and cell motility. Mol Microbiol, 1999, 32: 1-10.
    41. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 2003, 48: 1511-1524.
    42. Deziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol, 2001, 183: 1195-1204.
    43. Giaouris E, Chorianopoulos N, Nychas GJ. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot, 2005, 68: 2149-2154.
    44. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol, 2004,186: 7312-7326.
    45. Jonathan P, Andrews CS, Craig, DQM, Wilson M. Structural studies of microcosm dental plaques grown under different nutritional conditions. FEMS Microbiol Lett, 2000, 189: 215-218.
    46. Christersson CE, Glantz PO, Baier RE. Role of temperature and shear forces on microbial detachment. Scand J Dent Res, 1988, 96: 91-98.
    47. Else TA, Pantle CR, Amy PS. Boundaries for biofilm formation: humidity and temperature. Appl Environ Microbiol, 2003, 69: 5006-5010.
    48. Budhani RK, Struthers JK. Interaction of Streptococcus pneumoniae and Moraxella catarrhalis: investigation of the indirect pathogenic role ofβ-lactamase-producing moraxellae by use of a continuous-culture biofilm system. Antimicrob Agents Ch, 1998, 42: 2521-2526.
    49. Hoyle BD, Alcantara J, Costerton JW. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Ch, 1992, 36: 2054-2056.
    50. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Ch, 2000, 44: 1818-1824.
    51. Zheng Z, Stewart PS. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Ch, 2002, 46: 900-903.
    52. Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Ch, 2005, 49: 2467-2473.
    53. Suci PA, Mittelman MW, Yu FP, Geesey GG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Ch, 1994, 38: 2125-2133.
    54. Van Delden C, Pesci EC, Pearson JP, Iglewski BH. Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun,1998, 66: 4499- 4502.
    55. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect, 2003, 5: 1213-1219.
    56. Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents. Microbiology, 2000, 146: 547-549.
    57. Valk W, Liem KD, Geven WB, et al. Seldinger technique as an alternative approach for percutaneous insertion of hydrophilic polyurethane central venous catheters in newborns. Parenter Enteral Nutr,1995,19(2):151-155.
    58. Michael E, Rhydderch D, Ferdinand Z, et al. High incidence of line-related infection and mechanical failure of antiseptic impregnated central venous catheter in highly immunocompromised patients. Scand J Infect Dis,1996,28(1):91-93.
    59. Anwar H, Strap JL, Chen K. Dynamic interaction of biofilm of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother,1992, 36(6):1208-1214.
    60. Kanaka G, Shigeta M, Komatsuzawa H, et al. Effect of the growth rate of Pseudomonas aeruginosa biofilm on the susceptibility to antimicrobial agents:bata-lactamas and fluoroquinolones.Chemotherapy,1999,45(1):28-36.
    61.刘书盈,公衍文,黄萍,等.司帕沙星对生物被膜内细菌的清除作用.中国抗生素杂志,2001,26(6):390-392.
    62.方向群,刘又宁,陈迁,等.阿奇霉素对生物被膜的抑制及对氟罗沙星的增效作用.中华结核和呼吸杂志,1998,21(9):538-540.
    63. Monden K, Ando E, Iida M, et al. Role of fosfomycin in a synergistic combination with ofloxacin against Pseudomonas aeruginosa growing in a biofilm. J Infect Chemother, 2002,8(3):218-226.
    64.裴斐,王睿细菌生物被膜相关感染的治疗进展药物与临床,2001,16(5):53-56.
    65.王睿,方向群细菌生物被膜相关感染的特点与防治国外医药抗生素分册,1998,19(1):50-52.
    66.王睿,陈迁,方向群,等尿激酶或蚓激酶与氟罗沙星联合应用对细菌生物被膜的影药学学报,1999,34(9):662-665.
    67. Selan L,Berlutti F,Pasariello C,et al. Proteolytic enzymes: a new treatment strategy for prosthetic infections. Antimicrob Agents Chemother,1993, 37(12):2618-2621.
    68. Mai GT,Mccoxmack JG,Seow WK, et al. Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase, specific monoclonal antibodies,and antibiotic. Infect Immun,1993, 61(10):4338- 4343.
    69. Mai GT, Scow WK, Pier GB,et al. Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide(alginate):reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infect Immun.1993,61(2):559-564.
    70. Hatch RA,Schiller NL.Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother.1998,42(4):974-977.
    71. Martins LO, Brito LC, Isabel SC. Roles of Mn2+,Mg2+,and Ca2+on algnate biosynthesis by Pseudomonas aeruginosa. Enzyme Microb Technol,1990,12:794.
    72. Boyd A, Ghosh M, May TB, et al. Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product. Gene.1993,6;131(1):1-8.
    73. Wu H, Song Z, Hentzer M, et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother.2004,53(6):1054-1061.
    74. Feng X, Zhao G, Cui L, et al.Interaction between biofilm formed by Pseudomonas aeruginosa and antibacterial agents.Wei Sheng Wu Xue Bao.2000,40(2):210-213.
    75.陈一强,覃雪军,朱莲娜等.金银花水煎液及联合头孢他啶对铜绿假单胞菌生物被膜的体外影响.中华微生物学和免疫学杂志,2004,24(9):738-742.
    76. Song Z, Moser C, Wu H, et al.Cytokine modulating effect of ginseng treatment in a mousemodel of Pseudomonas aeruginosa lung infection. J Cyst Fibros.2003, 2(3):112-119.
    77. Potera C.Forging a link between biofilms and disease.Science.1999,19;283(5409):1837-1839.
    78. McLeod BR, Fortun S, Costerton JW, et al. Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics. Methods Enzymol.1999; 310:656-670.
    79. Rediske AM, Roeder BL, Nelson JL, et al. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Chemother,2000,44(3):771-772.
    80. Eberl, L. N-acyl homoserine-lactone-mediated gene regulation in gram-negative bacteria. Syst. Appl Microbiol, 1999, 22: 493-506.
    81. Fuqua W C , et a1 . Quorum sensing in bacteria:The LuxR-LuxI family of cell density-responsive transcriptional regulators.J Bacteriol, 1994,176-269
    82. Nealson K H.et a1.Cellular control of the synthesis and activity of the bacterial luminescent system.J Bacteriol,1970,104:313.
    83. Sitnikov D M ,et a1.Transcriptional regulation of bioluminescence genes from Vibrio fischeri.Mo1 Microbiol,1995,17:801.
    84. Swift S.et a1. Quorum sensing as flpopulation-density-dependent determinant of bacterial physiology.Adv Micro Physiol,2001,45:199.
    85. Greenberg EP.Quorum sensing in gram-negative bacteria.ASM News,1997, 63:371.
    86. Hastings J W .et a1.Quorum sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria.J Bacteriol,1999,181:2667.
    87. Eberhard A.Inhibition and activation of bacterial luciferase synthesis. J Bacteriol,1972,
    109:1101.
    88. Fuqua C,Winans S C,Greenberg E P.Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol,1996,50:727-751.
    89. Leo Eberl, S?ren Molin, and Michael Givskov.Surface Motility of Serratia liquefaciens MG1. J Bacteriol,1999,181:1703-1712.
    90. Latifi, A., et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol, 1995, 17: 333-343.
    91. Pearson J.R.,Van Delden C., Active efflux and diffusion are involved in transport of Pseudomonas aeurginosa cell-to-cell signals. J Bacteriol.1999,181:1203-1210.
    92. Roger GF,DavidI.P,Barrie W.B,etal.Quorum sensing: a novel target for antiinfective therapy. J.Antimicrob.Chemother.1998,42:569-571.
    93. Matthew R.P,Peter G,etal. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria:A signaling mechanism involved in associations with higher organisms.PNAS.2000,97:8789-8793.
    94. Gambello M.J.,Iglewski B.H.,Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activatoe of elastase expression. J.Bacteriol.1991 ,173:3000-3009.
    95. Passador L.,Cook J.M.,Gambello M.J.,Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993 260:1127-1130.
    96. Pearson J.R,Gray K.M. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc.Natl.Acad.Sci.USA 1994,91:197-201.
    97. Winson M.K.,Camara M.,Multiple N-aeyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc.Natl.Acad.Sci.USA1995,92:9427-9431.
    98. Bainton N·J.,Bycroft B.W.,A general role for thelux autoinducer in bacterial cell signaling: control of antibiotic biosynthesis in Ereinia. Gene1992,116:87-91.
    99. EsPinosal-Urgel M. Resident Parking only: rhamnolipids maintain fluid channels in biofilmsl〔J〕.J Baeteriol,2003,185(3):699-700.
    100. Semyour JD,Gage JP,Codd SL,etal.Anomalous fluid transport in porous media induced by biofilm growth〔J〕.Physical Rev Lett,2004,93(19):198103.
    101. Yooh SS,HenniganRF,Hilliadr GM,etal. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis Pathogenesis〔J〕. Developmental Cell,2002,5:593-603.
    102. Gmabello MJ,Iglewski BH.Cloning and characterization of the Pseudornonas aeruginosa lasR gene,a transcriptional activator of elatase expression〔J〕. J Baeteriol,1991,173:3000-9.
    103. Toder DS,Gmabello MJ,Iglewski BH. Pseudomonas aeruginosa LasA:a second elastase under the transcriptional control of lasR〔J〕.Mol Microbiol,1991,5(8):2003-10.
    104. Oehsner UA,Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseodomonas aeruginosa〔J〕.Proceedings ofthe National Academy of Sciences of the United States of America,1995,92(14):6424-8.
    105. Brint JM,Ollman DE. Snythesis of multiple exoporducts in Pseudomonas aeruginosa is under the control of RhlR-Rhll,another set of regulators in strain PAO1 with homology to the autoinducer-esponsive LuxR-Luxl family〔J〕.J Baeteriol,1995,177(24):7155-63.
    106. Gambello MJ,Kaye S,Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene(apr) and an enhancer of exotoxin A expression[J]. Infection Immunity,1993,61(4):1180- 4.
    107. Suh SJ,Silo-Suh L,Woods DE,etal.Ohman DE.Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa.[J]. J Bacteriol,1999,181(13):3890-7.
    108. Stintzi A,Evnas K,Meyer JM,etal. Quourm-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasl mutants exhibit reduced Pyoverdine biosynthesis[J] . FEMS Microbiol Lett,1998,166(2):341-5.
    109. ChaPon-Hevre V,Akrim M,Latifi A,etal. Bally M.Regulation of the xcp secretion pathway by multiple quourm-sensing modulons in Pseudomonas aeruginosa [J]. Mol Microbiol,1997,4(6):1169-78.
    110. Reimmann C,Beyeler M,Latifi A,etal.The global activator GacA of Pseudomonas aeruginosa PAO1 Positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence a factors pyocyanin,yanide and lipase[J] .Mol Microbiol,1997,24(2):309-19.
    111. Latifi A,Foglino M,Tnakaa K,etal.A hierarchical quourm-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR(VsmR) to expression of the stationary-Phase sigma factor RPoS[J]. Mol Microbiol,1996,21(6):1137-46.
    112. Vijgenboom E,Buseh JE,Canters GW. In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR〔J〕. Microbiol,1997,143(Pt9):2853-63.
    113. Hassett DJ,Ma JF,Elkins JG,etal.Quourm sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen Peroxide〔J〕. Mol Microbiol,1999,34(5):1082-93.
    114. Pesei EC,Pearson JP,Seed PC,etal.Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa〔J〕. J Bacteriol,1997,179(10):3127-32.
    115. Pesei EC,Iglewski BH. The chain of command in Pseudomonas quorum sensing〔J〕.Trends in Microbiol,1997,5(4):132-5.
    116. Albus AM,Pesei EC,Runyen-Janeeky LJ,etal.Vfr controls quorum sensing in Pseudomonas aeruginosa [J]. J Bacteriol,1997,179(12):3928-35.
    117. Whiteley M,Parsek MR,Greenberg EP.Regulation of quorum sensing by RPoS in Pseudomonas aeruginosa.〔J」. J Baeteriol,2000,182(15):4356-60.
    118. Fuqua W.C,Winans S,C,Greenberg E.P, et al,Quorum sensing in bacteria:the LuxR-Luxl Family of cell density-responsive transcriptional regulators. J Bacteriol.1994,176:269-275.
    119. Mary Jo Kirisits and Matthew R. Parsek2. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cellular Microbiology 2006. 1462-5822.
    120. Davies D G, Parsek MR, Pearson J P, et al. The involvement of cell-to-cell signals in thedevelopment of a bacterial biofilm. Science, 1998, 280(5361): 295-298.
    121. Rashid M H , Rumbaugh K, Passador L , et al. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 2000, 97( 17): 9636-9641.
    122. Parkins M D, Ceri H, Storey DG. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol, 2001, 40(5): 1215-1226
    123. Hassett D J, Cuppoletti J, Trapnell B, et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev, 2002, 54(11): 1425-1443.
    124. Victoria E. Wagner, John G. Frelinger, Richard K. Barth, et al. Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends in Microbiology 2006,Vol.14 No.2 .
    125. Ohman DE, Chakrabarty AM. Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect Immun, 1982, 37: 662-669.
    126. Boles BR, Thoendel M, Singh PK. Self-generated diversity produces‘‘insurance effects’’in biofilm communities. Proc Natl Acad Sci U S A, 2004, 101: 16630-16635.
    127. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, 2000, 146: 2395-2407.
    128. Sambrook,J.,Fritseh,E. F.&Maniatis,T.Molecular cloning: a laboratory manual.(Cold Spring Harbor Laboratory Press,N.Y.) (1989).
    129. Wu, L. et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science ,2005,309, 774-777.
    130. De Kievit, T. R., Gillis, R. J., Marx, S., Brown, C. & Iglewski, B. H. Quorum sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl EnvironMicrobiol,2001, 67,1865-1873.
    131. James P. Pearson, Everett C. Pesci, And Barbara H. Iglewski* (1997). Roles of Pseudomonas aeruginosa las and rhl Quorum-Sensing Systems in Control of Elastase and Rhamnolipid Biosynthesis Genes. Journal of Bacteriology, 1997, p. 5756-5767.
    132. Parsek, M. R., and E. P. Greenberg. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA , 2000,97:8789-8793.