SiC_p/Cu梯度复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用粉末冶金法制备了SiCp/Cu梯度复合材料,借助光学显微镜、扫描电镜、XRD、显微硬度计、涡流电导仪等研究了其显微组织、显微硬度及导电性,探讨了其热疲劳性能、氧化性能和磨损性能。研究结果如下:
     SiCp/Cu梯度复合材料的基体连续,层间界面消失,增强颗粒呈梯度分布;复压烧结工艺使材料的平均致密度与一次烧结后的试样相比提高了7.1%,电导率提高7.8%,压缩变形后,最高致密度达到96.1%;SiCp/Cu复合材料的电导率随着SiC含量的增加而降低,经压缩变形和退火处理后,SiCp/Cu复合材料的电导率有所增加。SiCp/Cu梯度复合材料从基体至表面硬度值逐渐提高,导电性逐渐减小;600℃循环淬水热疲劳实验表明,六层及大于六层的SiCp/Cu梯度复合材料经过80次循环淬水后未出现层间裂纹,表现出良好的抗热疲劳性能。
     400~700℃的氧化实验表明:SiCp/Cu复合材料的抗氧化性能优于纯Cu;SiC体积分数为20%时和SiC颗粒尺寸为20μm时复合材料的抗氧化性较好;在700℃循环氧化条件下,复合材料的氧化增重呈现出近抛物线变化规律;SiCp/Cu梯度复合材料沿厚度方向的抗氧化性呈现梯度变化特征。
     SiCp/Cu复合材料的耐磨性随SiC含量的增加而增强。SiCp/Cu梯度复合材料的耐磨性优于纯铜,并且呈梯度分布;低载荷条件下的磨损机制主要是磨粒磨损,载荷较高时,主要是磨粒磨损和剥层磨损的综合作用。
SiCp/Cu gradient composites was fabricated by powder metallurgy. The microstructure, hardness and conductivity of SiCp/Cu gradient composites were investigated by optical microscope, scanning electronical microscope, XRD and eddy current conductivity instrument. The thermal fatigue properties, oxidation properties and wear resistance were discussed in this paper. The results are as follows.
     The matrix of SiCp/Cu gradient composites is continuous, there is no interface between layers, and the distribution law of reinforced particles is gradient. The average density of SiCp/Cu gradient composites is enhanced 7.1% and conductivity is increased 7.8% by re-pressing and re-sintering process. After the compression deformation, the maximum density reached 96.1%. The conductivity of SiCp / Cu composite decreased with the increase of SiC content, and the conductivity increased by compressive deformation and annealing. The hardness of a gradual increase in the conductivity decreased gradually from the matrix to the surface of SiCp/Cu gradient composites. SiCp/Cu gradient composites is repeatedly tested by water quenching with the temperature difference of 600℃, and the results show that six-layered and higher than six-layered SiCp/Cu gradient composites have no crack between layers after 80 cycle water quenching, and have the better thermal fatigue resistance properties.
     The oxidation experiments show that the oxidation resistance behavior of SiCp/Cu composites is better than Cu between 400℃and 700℃. 20%vol SiCp/Cu composites and with SiC 20μm in size has the better oxidation resistance behavior. With the oxidation time added, the mass gained of the composites added, and showed the same changes in the law of parabola in the cyclic oxidation conditions in 700℃;The oxidation resistance properties of SiCp/Cu gradient composites possess the gradient characteristic along the direction of thickness.
     The wear resistance properties of SiCp/Cu composites are increasing with the SiC content increasing. The wear resistance of SiCp/Cu gradient composites is superior pure Cu, and the distribution law of wear resistance is gradient.When the applied load is lower, the wear mechanism of SiCp/Cu composites is mainly abrasive wear. When the load is higher, the mainly wear mechanism are abrasive wear and delaminating wear of the combination.
引文
[1]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社, 2001,9:1-2
    [2] S.H.Chen and T.C.Wang. Size effects in the particle-reinforced metal-matrix composites[J]. Acta Mechanica, 2002, 157:113-127
    [3]吴树森.日本金属基复合材料的研究与应用[J].兵器材料科学与工程, 1999,22(2):56-70
    [4]宋伟.金属基复合材料的发展与应用[J].铸造设备研究, 2004(5):48-50
    [5]胥锴,刘政,刘萍.金属基复合材料的发展及其应用[J].南方金属, 2005,147:1-6
    [6]解念锁.梯度功能材料的性能评价研究[J].陕西工学院学报, 2003,19(2):10-12
    [7] R.Rodriguez-Castro. Processing and microstructural charaterization of functionally gradient Al A359/SiCp composite[J]. Journal of Materials Science, 2002,37:1813-1821
    [8]解念锁.梯度功能材料的制造方法及应用[J].陕西工学院学报, 2002,18[2]:4-7
    [9]张雷,周科朝,李志友等.功能梯度材料的制备技术[J].粉末冶金材料科学与工程, 2003,8(1):48-56.
    [10] V. E. Beal, P. Erasenthiran, N. Hopkinson. The effect of scanning strategy on laser fusion of functionally graded H13/Cu materials[J]. Int J Adv Manul Technol, 2006,30:844-852
    [11] Korb G., Kordb J., Groboth G. Thermal expansion behaviour of unidirectional carbon-fibre-reinforced copper-matrix composites. Composites Part A: Appl Sci Manufact(Incorporating composites and composites manufacturing), 1998,29(12):1563
    [12]张毅,周延春. Ti3SiC2弥散强化Cu:一种新的弥散强化铜合金[J].金属学报, 2000,36(6):662
    [13]熊拥军,邓至谦,凌兴珠,等. TiB2颗粒增强铜基复合材料的研究[J].中南工业大学学报, 2001,32(3):294
    [14]刘涛,郦剑,凌国平等.颗粒增强铜基复合材料研究进展[J].材料导报, 2004,18(4):53-55
    [15] Kock T., Brendel A., Bolt H.Interface reactions between silicon carbide and interlayers in silicon carbide-copper metal-matrix composites[J]. Journal of Nuclear Materials, 2007, 362 (2-3):197-201
    [16] Zhu J H,Liu L,Shen B. Mechanical properties of Cu/SiCp composites fabricated by composite electroforming[J]. Materials Letters, 2007,61(13):2804-2809
    [17] KeKe Gan, MingYuan Gu, Guohong Mu. Effect of Fe on the properties of Cu/SiCp composites[J]. J Mater Sci, 2008,43:1318-1323
    [18]钱宝光,耿浩然,郭忠全,等. B4C对铜基复合材料的力学性能与抗氧化性的影响[J].材料工程, 2005,34(5):48-51
    [19]周庆军.铸造碳化钨颗粒增强铜基复合材料的研究[D].西安:长安大学, 2002,3:1
    [20]刘德宝,崔春翔. TiN颗粒增强铜基复合材料的制备及性能研究[J].稀有金属, 2004,28(5):856-861
    [21]王涂根,吴玉程,王文芳,等.纳米AlN颗粒增强铜基复合材料的组织与性能研究[J].粉末冶金工业, 2005,14(5):21-24
    [22]谢明,杨有才,张健康,等. Cu/Al2O3复合材料的制备工艺、性能及显微组织[J].稀有金属, 2007, 31(增刊):60-66
    [23] Chih-Chi Chen,Sinn-Wen Chen.Nickle and copper deposition on Al203 and SiC particulates by using the chemical vapour deposition-fluidized bed reactor technique[J]. Journal of Materials Science, 1997,32:4429-4435
    [24]宋娅玲,刘贵民,杜建华.纳米SiO2颗粒增强铜基复合材料性能研究[J].装甲兵工程学院学报, 2007,21((5):59-61
    [25] Y. Zhou, B. Chen, X. Wang. Mechanical properties of Ti3SiC2 particulate reinforced copper prepared by hot pressing of copper coated Ti3SiC2 and copper powder[J]. Materials Science and Technology, 2004,20:661-665
    [26] Zhangmin Wang. Study of a reaction at the solid Cu/а-SiC interface[J]. Journal of Materials Science, 1998,33:1177-1181
    [27] Hyoung-Keun Lee, Jai-Young Lee. Decomposition and interfacial reaction in brazing of SiC by copper-based active alloys[J]. Journal of Materials Science Letters, 1992,11:550-553
    [28] T. Kock, A. Brendel, H. Bolt. Interface reactions between silicon carbide and interlayers in silicon carbide-copper metal-matrix composites[J]. Journal of Nuclear Materials , 2007, 362:197-201
    [29]钟涛兴,吉元,李英,等. SiCp/Cu复合材料的热膨胀性和导热性[J].北京工业大学学报, 1998,24(3):34-37
    [30]凌云汉,李江涛,葛昌纯,等.聚变堆面向等离子体SiC/Cu梯度材料的制备与评价[J].北京科技大学学报, 2001,23(3):257-261
    [31] Changsheng Xie, Mulin Hu, Yaming Sheng. Oxidation reaction during laser cladding of SAE1045 carbon steel with SiC/Cu alloy powder[J]. Journal of Materials Science, 2001,36:1501-1505
    [32]鲁云,朱石碣,马鸣图,等.先进复合材料[M].北京:机械工业出版社, 2003,9:172-177
    [33]王永康,王伟民,顾晓红.耐烧蚀梯度涂层材料的研究[J].兵器材料科学与工程, 1994,17(4):7-11
    [34]卿涛,邵天敏,温诗铸. Ti/TiN和Ni/TiN多层膜的制备和小载荷下摩擦性能研究[J].中国表面工程, 2006,19(5):32-37
    [35] Sasaki M. , Weonkim S. Preparation of TiC/C gradient composites by CVD[J]. Powder and Powder Metall, 1992,39(4):295
    [36]李宝伟,全建峰,黄浩. CVD法制备SiC纤维B4C涂层工艺研究[C].第十五届全国复合材料学术会议论文集(上册), 2008
    [37]范金娟,张卫方,王全胜,等. ZrO2梯度涂层热震的有限元分析[J].航空材料学报, 2002,22(3):10-14
    [38]徐智谋.功能梯度材料和低温制备研究现状和展望[J].表面技术, 2000,29(2):1-5
    [39]徐自立.离心铸造铝基自生梯度复合材料的断口分析及韧脆性的分形量度[C].第二届有色金属及铸造国际会议论文集, 2001
    [40]左孝青,刘荣佩,张召亮,等.离心铸造铝-铬自生梯度复合材料梯度结构研究[J].昆明理工大学, 2003,28(4):17-20
    [41]陈晓明.电泳共沉积-烧结法制备钦合金表面生物活性梯度陶瓷涂层的研究[D].武汉:武汉理工大学博士论文, 2001:1-15
    [42]郭成,朱维斗,金志浩.梯度功能材料的研究现状与展望[J].稀有金属材料工程, 1993,24(3):18-24
    [43]石功奇.金属陶瓷复合层的组织与性能研究[J].兵器材料科学与工程, 1992,15(2):33-36
    [44]解念锁. SiCp/Ni梯度复合材料的制备与热震性能研究[J].陕西工学院学报,2003,19[1]:10
    [45]郑冀,郑志强,岳建民.铜基功能梯度复合材料的摩擦性能研究[J].稀有金属材料与工程, 2007,36(3):604-606
    [46]郭成,易树清,胡晓东等.SiC颗粒增强铝合金基梯度复合材料的制备及组织和性能[J].中国有色金属学报,1998,8(1):123-127
    [47]王瑾. Al2O3/Cu梯度复合材料的制备及磨损性能研究[J].重庆工学院学报, 2006,20(50:46-50
    [48] K. Tsuda, A Ikegaya. Development of functionally gradient sintered hard materials [J]. Powder Metallurgy, 1996,39(4):296-300
    [49]蔡旬.铸造铝合金激光表面改性金属/陶瓷梯度层[J].机械工程材料, 2002,26(1):25-28
    [50]张国兵,郭全贵,刘郎,等.热压烧结C/B4C功能梯度材料性能的研究[C].第19界碳.石墨材料学术会论文集, 2004,19:173-178.
    [51]李云凯,王勇,钟家湘.功能梯度材料[J].材料导报, 2002,16(10):9-11
    [52]刘长生,方建成,陈庆财.梯度功能材料的制备与性能评价[J].机械工程材料, 2006,30(10):1-4
    [53]龚良贵.梯度功能材料的热应力分析及热性能评价[J].华南理工大学学报, 2003,31(增刊):137-140
    [54]沈金文.在热震试验中热障涂层的裂纹形成和扩展[J].新技术新工艺, 2002,(4):39-41
    [55]周张健,葛昌纯,李江涛.熔渗-焊接法制备W/Cu功能梯度材料的研究[J].金属学报, 2000,36(6):655-658
    [56]于思荣,任露泉,佟金,等. SiCp/Al-Si合金梯度材料的磨损特性[J].摩擦学学报, 2001,21(2):151-153
    [57]张宝生,陈洪升,林伯年,等.离心铸造制备Al-Ti系金属间化物梯度功能材料的组织及耐磨性研究[J].功能材料, 1994,25(5):446-451
    [58]杨月英,林峰,王建江,等.梯度过渡复相陶瓷涂层的制备及其耐磨性能研究[J].稀有金属材料与工程, 2007,36(增刊2):512-515
    [59]郭成,程羽,易树清,等. SiC颗粒增强铝合金基梯度复合材料的制备与压缩性能[J].复合材料学报, 1999,16(1):8-12
    [60]李进,周春玲,杨智春. SiCp/A1功能梯度复合材料的压缩性能研究[J].兵器材料科学与工程, 2009,32(3):33-36
    [61]史子木,姜萍,谢季佳,等.具有梯度结构表层301不锈钢的压缩性能[J].金属热处理, 2008,33(8):61-63
    [62]张卫文,李元元,温利平,等.半连续铸造AlCu/Al梯度合金的高温退火研究[J].金属热处理, 2002,27(5):6-8
    [63]许富民,齐民,朱世杰,等. SiC颗粒增强Al基梯度复合材料的制备与性能[J].金属学报, 2002,38(9):998-1001
    [64]柳襄怀.离子束增强沉积形成梯度薄膜[J].材料研究学报, 1994,8(1):61-66
    [65]夏永红,金卓仁,程继贵,等.梯度功能材料及其在机械工程中的应用[J].机械工程材料,2001,25(5):9-11
    [66]李永,宋健,张志民.梯度功能材料在绿色内燃机上的应用研究[J].公路交通科技, 2003,20(4):10-14
    [67]朱学明,王青,马其成.梯度功能材料对内燃机耐久性的影响[J].小型内燃机与摩托车, 2002,31(1):26-29
    [68]焦丽娟,李军.陶瓷-金属功能梯度复合材料在装甲防护中的应用[J].四川兵工学报, 2006, 27(4):31-32
    [69]富莉.渐变功能材料的开发及其展望[J].国外金属材料, 1990,(1):13-17
    [70]王新林,王桂琴.金属功能材料发展概况[J].金属功能材料, 1999,6(4):145-155
    [71]李春月,解念锁,王艳. SiCp/Cu复合材料高温抗氧化性能研究[J].陕西理工学院, 2009,25(4):1-4
    [72]邹俭鹏,阮建明,周忠诚,等.功能梯度复合材料的设计与制备以及性能评价[J].粉末冶金材料科学与工程, 2005,10(2):78-87
    [73]陶杰,赵玉涛,潘蕾,等.金属基复合材料制备新技术导论[M].北京:化学工业出版社, 2007,4:1-50
    [74]司乃潮,傅明喜.有色金属材料及制备[M].北京:化学工业出版社, 2006,1:242-251
    [75] C. Y. Lin, H. B. Mcshane, R. D. Rawlings, Mater Sci Tech., 1994,10:659
    [76]王瑾.液态模锻SiCp/ZL201复合材料力学性能研究[J].陕西工学院学报, 2006,22(3):41-43
    [77] Neubrand A. , Roedel J. Gradient materials; An overview of a novel concept[J].Zeitschrift fuer Metallkunde, 1997,88(5):358
    [78] Hirai T. Chen L. Recent and prospective development of functionally gradient materials in Japan[J], Materials Science Forum, 1998-1999,308-311:509
    [79]郑修麟.材料的力学性能[M].西安:西北工业大学出版社, 1991,4:1-31
    [80] Liu Y. B., Lim S. C, Lu L,et al. Recent development in the fabrication of metal matrix-particulate composites using powerd metallurgy techniques[J]. Journal of Materials Science, 1994,29(8):1999-2007
    [81]王伟,许晓静.亚微米SiCp含量对SiCp/Cu基复合材料性能的影响[J].热加工工艺, 2004,33(11):24-26
    [82]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社, 1992:59-105
    [83] S. K. Roy, V. Ananth, S. K. Bose. Oxidation Behavior of Copper at High Temperatures under Two Different Modes of Direct-Current Applications[J]. Oxidation of Metals, 1995,43(4):185-215
    [84] V. V. Prisedsky, V. M. Vinogradov. Fragmentation of Diffusion Zone in High-temperature Oxidation of Copper[J]. Journal of Solid State Chemistry, 2004,177:4258–4268
    [85] Siergiej r, Clarke R C, Sriram S, et al. Advances in SiC Materials and Devices: an Industrial Point of View[J]. Mater Sci Eng B, 1999,61:9-17
    [86]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001,4
    [87]解念锁. SiO2p/Ni和SiCp/Ni复合材料抗氧化性能研究[J].陕西工学院学报, 2005,21(6):40-42
    [88] S. Skolianos, T. Z. Kattamis. Tribological properties of SiCp-reinforced Al-4.5%Cu-1.5%Mg alloy composites[J]. Mater.Sci.Eng., 1993,A163:107-113.
    [89] A. P. Sannino, H. J. Rack. Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion[J]. Wear, 1995,189:1-19.
    [90] S.C. Tjong, K.C. Lau. Tribological behaviour of SiC particle-reinforced copper matrix composites[J]. Materials Letters, 2000,43:274-280.