用户名: 密码: 验证码:
分子印迹聚合物、量子点及其复合微球的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术和量子点技术都是近十几年发展起来的高分子材料技术,被广泛应用于各个领域,在食品安全领域也均具有重要的作用。本论文分别以4-甲基咪唑(4-MI)、三聚氰胺(MA)、氨基甲酸乙酯(EC)为模板分子,利用沉淀聚合法分别制备了三种分子印迹聚合物,利用油酸、油胺为混合稳定剂在液体石蜡中绿色制备了CdSe量子点和CdSe/CdS核壳量子点,在此基础上组合了分子印迹技术和量子点技术,制备了荧光分子印迹复合微球,现总结如下:
     1.以4-MI为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,在乙腈中通过沉淀聚合制备了分子印迹聚合物。用紫外分光光度法对4-MI与MAA的相互作用进行了分析,结果表明主客体主要存在形式为,1个4-MI与1个MAA通过氢键相互作用。利用Langmuir数学模型对吸附特性进行了分析,Scatchard分析显示印迹聚合物的最大吸附量Bmax=221.14μmol/g和解吸常数KD=1.8mmo1/L。同时对印迹聚合物的吸附选择性和吸附动力学进行了初步研究。
     2.以MA为模板分子,MAA为功能单体,EGDMA为交联剂,AIBN为引发剂,在乙腈-乙二醇(20:1,v/v)混合溶剂中沉淀聚合制备了分子印迹聚合物微球。1H-NMR和紫外光谱方法研究表明,MA与MAA分子通过协同氢键作用形成1:2型氢键配合物。利用扫描电镜和红外光谱对聚合物微球的结构进行了表征。结果表明,印迹聚合物近似圆球形,粒径约为400-500nm,且大于非印迹聚合物微球,表面存在大量的结合位点。通过静态平衡吸附实验研究了聚合物微球对模板分子的结合能力,印迹聚合物微球在4h后逐渐达到吸附平衡,Scatchard分析表明,印迹聚合物微球主要存在两类不同的结合位点,最大表观结合量(Qmax)和平衡离解常数(Kd)分别为Qmax1=22.97μmol/g, Kd1=0.14×10-3 mol/L; Qmax2=157.65μmol/g,Kd2= 2.55×10-3mol/L,计算得出表观印迹效率和有效印迹效率分别为68%和58%。
     3.改变传统沉淀聚合的合成条件,以液体石蜡和甲苯的混合液为溶剂和致孔剂,以EC为模板分子,MAA为功能单体,EGDMA为交联剂,AIBN为引发剂,制备了单分散微米级分子印迹聚合物微球。1H-NMR、红外光谱及计算机模拟研究表明EC分子与MAA之间具有较强的氢键作用。利用扫描电镜、红外光谱及示差扫描量热仪对聚合物微球的结构进行了表征,结果表明,印迹微球表面具有能够识别模板分子的基团,且微球粒径较大(约为4.32μm)、热稳定性好,有望应用于固相萃取及液相色谱填料等方面。
     4.以液体石蜡作为高温反应溶剂,以油酸和油胺为混合稳定剂,利用高温热解法一步合成了高质量的CdSe量子点。通过紫外-可见吸收光谱、荧光发射光谱、红外光谱和X射线衍射等手段对量子点的光学性质和结构进行了表征。结果表明,油胺/油酸混合表面活性剂稳定的量子点吸收光谱峰形更加尖锐,荧光发射光谱半峰宽更窄,从42nm减小到32nm。反应温度和反应时间均对量子点的生长过程和光学性质有明显影响,220℃下反应10 min,荧光量子产率可达26.4%。CdSe量子点为立方晶型,平均直径d=3.6nm,荧光半峰宽较窄(32-39 nm),表面同时包覆了油酸和油胺,具有良好的光稳定性。
     5.用油酸和油胺为混合修饰剂,在CdSe量子点表面包裹CdS,进一步制备了性能优越的CdSe/CdS核壳量子点。该量子点结构为闪锌矿结构,立方晶型,其壳层CdS是外延生长在CdSe量子点核表面的,颗粒近似圆形,平均直径d=4.5nm。与核CdSe量子点相比,核壳型的CdSe/CdS量子点的紫外吸收峰和荧光发射峰分别红移了25nm和15nm。CdSe/CdS核壳量子点的荧光强度要明显高于CdSe量子点,紫外激发4h后量子产率高达60.7%,且光稳定性较好。
     6.将量子点技术与分子印迹技术相结合,以EC为模板分子,MAA为功能单体,EGDMA为交联剂,CdSe/CdS核壳量子点为荧光组分,光热联合引发,共沉淀聚合法制备了荧光分子印迹复合微球。将制备的荧光分子印迹复合微球用于EC的检测,在浓度范围1 mmol/L~5 mmol/L内具有良好的线性关系,回归方程为ln(F0/F)=0.03419[Q]-0.00739,猝灭常数Ksv为3.419×10-2L/mmol,线性相关系数R2为0.994,说明氨基甲酸乙酯对荧光分子印迹复合微球的具有较好的猝灭作用,可以进一步详细研究,以实现对EC的快速准确的检测。
Molecularly imprinted technology and quantum dots technology are both polymer materials technology which have developed over recent decades and are widely used in various fields including the field of food safety. In this paper, three molecularly imprinted polymers are respectively prepared using 4-MI、MA and EC EC as template by precipitation polymerization. Oleic acid and Oleic acid are used as mixed stabilizers prepareing the CdSe and CdSe/CdS quantum dots. Based on the above, we combine molecular imprinted technology with the quantum dots technology to prepare fluorescent molecularly imprinted composite microspheres. Summarized as follows:
     1. Uniformly imprinted polymer microspheres are prepared by precipitation polymerization in acetonitrile.4-MI(4-methyl imiadzole), MAA(methacrylic acid), EGDMA(ethylene glycol dimethacrylate) and AIBN(azobisisobutyronitrile) are used as template, functional monomer, cross-linker and initiator, respectively. UV spectra is used to demonstrate the mechanism of the interaction between 4-MI and MAA. It is found that one 4-MI is entrapped by one MAA molecules in acetonitrile. Langmuir model is used to fit the adsorption data, the results show that the 4-MI imprinted polymer microspheres show specific binding sites to the 4-MI.The data obtained in equilibrium adsorption experiments are processed by Scatchard analysis, the dissociation contents (KD) and the apparent maximum binding capacity(Bmsx) are KD=1.8mmol/L,Bmax=221.14μmol/g. The 4-MI imprinted polymers have showed high affinity to 4-MI.
     2. Uniformly molecularly imprinted polymer microspheres are prepared by precipitation polymerization of MAA and EGDMA using melamine as template in acetonitrile-ethylene glycol mixed solvent (20:1, v/v).1H-NMR and UV spectrometry are employed to demonstrate the mechanism of the interaction between Melamine and MAA, and the results show that the Melamine-MAA complexes of 1:2 mole ratio is obtained by cooperative hydrogen bonding. The adsorption efficiency is investigated by equilibrium adsorption experiments. The data obtained showed that the imprinted polymer microspheres reach equilibrium after 4h and have higher adsorption efficiency compared to the non-imprinted polymer microspheres, which have the same chemical composition. Scatchard analysis reveals that the apparent maximum binding capacity and the dissociation contents are Qmaxi=22.97μmol/g, Kd1=0.14×10-3mol/L for high affinity binding sites and Qmax2=157.65μmol/g, Kd2=2.55×10-3mol/L for low affinity binding sites, respectively. Thus, the apparent imprinting efficiency and the effective imprinting efficiency are calculated 68% and 58%, respectively.
     3. We change the conditions of traditional precipitation polymerization. The monodisperse micron molecularly imprinted polymers microspheres are prepared by using EC as template, MAA as functional monomer, AIBN as initiator, EGDMA as cross linker, and the mixture of liquid paraffin and toluene as solvent and porogen, respectively. 1H-NMR, IR and computer are employed to demonstrate that there is strong hydrogen bonding between EC and MAA. Scanning electron microscopy, IR and Dynamic Rheometry are applied to indicate the characterization of the structure of the polymers microspheres. The above results demonstrated that the surface of microspheres has the imprinting hole which can recognize the template molecular. In addition, the microspheres with a good thermal stability, are comparatively large in size (approximately 4.32μm). As a result, it may be used in solid-phase extraction and chromatography packing.
     4. A greener synthetic route to highly luminescent CdSe quantum dots (QDs) is reported in this paper. Oleylamine and oleic acid are used instead of phosphonic acids (HPA or TDPA) as the stabilizer. Paraffin liquid, which is a natural, nontoxic, and cheap solvent, is used to replace tri-n-octylphosphine oxide (TOPO) as the solvent for the synthesis of CdSe QDs at relatively low temperatures. CdSe quantum dots capped by the oleylamine/oleic acid have sharper UV-vis absorption spectra peaks and more narrow fluorescence full-width at half-maximum(FWHW), and reduced from 42 nm to 32 nm. Reaction temperature and reaction time have a significant effect on the growth process and optical properties of the obtained CdSe quantum dots. The fluorescet quantum yield of obtained CdSe quantum dots that reacts within 15 min at 220℃can reach up to 26%. The cubic CdSe QDs with the surface coating of oleic acid and oil-amine together prepared by the proposed method, have narrow FWHW (32-39 nm) and good light stability.
     5. The CdSe/CdS core-shell quantum dots with predominant quality are prepared by using oleic acid and oleylamine as mixed modifier, and are wrapped with CdS. The structure of CdSe/CdS QDs are sphalerite and cubic, the shell grow epitaxially on the surface of the core of CdSe QDs, and particles are roughly spherical with a diameter d=4.5 nm. Compared with nuclear CdSe QDs, UV absorption peak and Fluorescence emission peak of the core-shell CdSe/CdS QDs are red shift 25 nm and 15 nm respectively. The fluorescence intensity of CdSe/CdS core-shell quantum dots is much higher than that of CdSe QDs, and production rate can reach up to 60.7% after 4 hours ultraviolet optical excitation.
     6. The fluorescent molecularly imprinted composite microspheres are prepared by coprecipitation polymerization of MAA, EGDMA and CdSe/CdS core-shell quantum dots using EC as template, which are used for determination of EC. The data obtained shows that there is a good linear relationship between EC and fluorescent intensity in the range of 1 mmol/L~5 mmol/L. The Stern-Volmer plots with a linear correlation coefficient R2=0.994 was ln(Fo/F)=0.03419[Q]-0.00739, and the quenching constant Ksv is 3.419×10-2 L/mmol. The above results indicate that EC can especially and proportionally quench the fluorescence of the fluorescent molecularly imprinted composite microspheres, and further study should be conducted to establish an accurate and rapid detection method for EC.
引文
1.陈国珍,王尊本.荧光分析法.北京:科学出版社,2006
    2.陈启凡,杨冬芝,王文星等.CdTe量子点对胰凝乳蛋白酶的荧光标记.分析测试学报,2008,27(2):188-191
    3.邓大伟,于俊生.柠檬酸稳定的水溶性CdSe和CdSe/CdS量子点的荧光特性.无机化学学报,2008,24(5):701-707
    4.邓大伟,钟文英,于俊生等.水溶性量子点荧光探针用于帕珠沙星的含量测定.光谱学与光谱分析,2008,28(6):1317-1321
    5.杜自卫,刘学涌,赵小东.沉淀聚合法制备TNT分子印迹聚合物微球.化学通报,2009,(11):1041-1177044
    6.方鲲,路阳,王凤平等.半导体量子点/聚合物纳米复合材料研究进展.材料导报,2006,(20):102-105
    7.冯彩群.蔗糖中4-甲基咪唑检测方法的探讨.中国卫生检验杂志,2000,10(2):48-49
    8.高志刚,周杰,曲金详.植物激素吲哚酸分子模板聚合物的分子识别特性.分析化学,2003,31(10):1173-1177
    9.郭秀娟,苏立强,乔石.四溴双酚A分子印迹聚合物的制备及其吸附机制初探.化工时刊,2009,23(3):13-16
    10.郝明燕.红霉素分子印迹聚合物膜的制备及性能研究.[西北工业大学硕士学位论文].西安:西北工业大学图书馆,2007
    11.何曼君,张红东,陈维孝等.高分子物理.上海:复旦大学出版社,2007
    12.黄玉刚,朱祖钊,李光吉等.Ⅱ-Ⅵ族半导体量子点及其聚合物纳米复合材料的制备.合成材料老化与应用,2008,37(3):32-37
    13.黄梓平,王建宁.鲁米诺-过氧化氢体系对敌敌畏的检测分析.农药,2002,43(9):19-21
    14.江明;晋园,彭彦等.单分散双酚A分子印迹微球的制备及其色谱性能.分析化学,2008,36(8):1089-1092
    15.李丹,刘俊业,孟继武等.掺杂Cu2+的ZnS纳米超微粒的荧光衰减.发光学报,1998,19(1):85-88
    16.李继民等.紫外可见光谱法测定酱油中4-甲基咪唑含量.光谱实验室,2008,25(2):84-87
    17.李祥,吕嘉杨.焦糖色素生产的的现状及其发展方向.中国酿造,2003,(1):7-10
    18.李燕,柴勇,龚久平等.液相色谱法测定奶粉中三聚氰胺的方法优化.食品科学,2009,30(14):227-229
    19.廖宇峰.应用于生物光子成像的CdSe量子点核壳结构材料的绿色制备.[浙江大学博士学位论文].浙江:浙江大学图书馆,2008
    20.林成芳.水溶性CdSe/CdS核壳纳米晶的合成表征与牛血清白蛋白的相互作用.[福建师范大学硕士学位论文].福州:福建师范大学图书馆,2007
    21.刘华蓉,葛学武,倪永红等.无机-有机纳米复合材料的研究进展.化学进展,2001,13(5):403-409
    22.刘剑波,羊小海,王柯敏等.以油胺-硒化氢复合物为前体的脂溶性量子点的制备.高等学校化学学报,2008,29(12):2516-2520
    23.刘舒曼,徐征,Wageh H. CdSe/CdS核/壳型纳米晶的光谱特性.光谱学与光谱分析,2002,22(6):908-911
    24.刘祥军,刘吉众,赵睿等.三甲氧基苄啶分子印迹整体柱的制备及色谱性能.高等学校化学学报,2007,28(10):1878-1880
    25.刘选明,刘巧玲,萧小鹃等.微乳液法制备CdSe/CdS核壳纳米粒子及表征.湖南大学学报,2006,33(2):90-94
    26.刘有芹等.分子印迹聚合物传感器的研究与发展.分析测试学报,2007,26(3):450-454
    27.马懿.Ⅱ-Ⅵ族胶体半导体量子点和复合结构的制备、化学组装及其光电性质研究.南京:南京大学物理系,2002
    28.梅芳,何锡文,李娟等.水溶性CdSe/CdS核壳纳米粒子制备的影响因素及其对CdSe/CdS光谱特性的影响.化学学报,2006,64(22):2265-2270
    29.慕春红,刘鹏,朱刚强等.ZnS:Cu纳米微粒的光致发光特性.无机化学学报,2007,23(5):844-848
    30.牛栋平,陶宁萍,李学惠.固相萃取-气相色谱法测定葡萄酒中的氨基甲酸乙酯.上海水产大学学报,2008,17(5):616-619
    31.潘元海,金军,蒋可.高效液相色谱/大气压化学电离质谱快速分析水中痕量有 机磷农药.分析化学,2000,28(6):666-671
    32.邵鑫,田军,薛群基等.有机-无机纳米复合材料的合成、性质及应用前景.材料导报,2001,15(1):50-53
    33.申中兰,杨俊,朱晓兰等.甲胺磷分子印迹聚合物的结合机理及其分子识别特性的光谱学研究.光谱学与光谱分析,2009,29(1):78-81
    34.石鹏.核/壳结构CdSe/CdS纳米晶的制备及其光稳定性.半导体光电,2007,28(3):383-390
    35.苏星光,王超.过渡金属Mn掺杂的ZnSe量子点的水相合成方法.中国专利,CN101503624.2009-08-12
    36.孙洁芳.水溶性量子点的合成及其作为小分子荧光探针的应用.[兰州大学硕士学位论文].兰州:兰州大学图书馆,2005
    37.孙聆东,付雪峰,钱程等.水热法合成CdS/ZnO核壳结构纳米微粒.高等学校化学学报,2001,22(6):879-882
    38.王刚垛,何凤生,荣康泰.单克隆抗体在农药免疫分析中的应用进展.中华劳动卫生职业病杂志,1998,16(6):368-370
    39.王华芳,李文友,何锡文等.荧光法研究3-氨基苯硼酸与牛血清白蛋白间的相互作用.化学学报,2007,65(1):43-48
    40.王加多,胡祥娜,周向阳等.蔬菜农药残留快速检测技术-胆碱酯酶速测卡法.食品科学,2003,24(6):109-113
    41.王丽萍,洪广言.无机-有机纳米复合材料功能材料.功能材料,1998,29(4):343-347
    42.王培龙,范理,宋荣等.动物尿液中盐酸克伦特罗的分子印迹固相萃取气象色谱质谱法研究.分析化学,2007,735(9):1319-1322
    43.王学军,许振良,邴乃慈.分子印迹的印迹效率及其评价.化学世界,2007,(4):243-247
    44.王雪婷,于俊生,谢颖.水溶性CdSe/CdS量子点的合成及其与牛血清蛋白的共轭作用.无机化学学报,2007,23(7):1185-1193
    45.吴东平,张勇,冯如朋等.痕量铜的CdS/ZnS量子点荧光猝灭测定.分析测试学报,2008,27(6):638-640
    46.吴亚贞.MOCVD法可控生长磷掺杂ZnO量子点及其性能研究.[硕士学位论 文].杭州:浙江大学图书馆,2008
    47.徐磊,韩泾鸿,梁卫国等.光寻址电位式传感器在有机磷检测上的应用.传感器技术,2003,22(10):42-47
    48.徐万帮,汪勇先,许荣辉等.CdS量子点的优化合成及其在离子检测中的应用.功能材料,2007,38(8):1277-1293
    49.严守雷,高志贤,房彦军.农药久效磷分子印迹聚合物合成及其亲合性评估.高分子学报,2006,(1):160-163
    50.严守雷.食品中农药残留检测的分子印迹纳米压电传感技术研究.[中国人民解放军军事医学科学院博士学位论文].天津:2006
    51.杨俊,朱晓兰,苏庆德等.可天宁印迹聚合物分子识别特性的光谱与XPS研究.光谱学与光谱分析,2007,27(6):1152-1155
    52.尤晓刚,贺蓉,田红叶等.水相中合成CdTe半导体量子点.上海交通大学学报,2007,41(10):1690-1694
    53.袁东星,邓永智,林玉晖.蔬菜中有机磷农药残留的发光菌快速检测.环境化学,1997,16(1):77-81
    54.张皓,杨柏.荧光纳米晶制备及其与聚合物的复合组装.高等学校化学学报,2008,29(2):217-229
    55.张华斌,张朝晖,聂燕等.碳纳米管表面绿原酸印迹固相萃取材料的制备及应用.分析化学,2009,37(7):955-959
    56.张晶慧.CdSe量子点的合成及其用于环境中污染物的检测.[东华大学硕士学位论文].上海:东华大学图书馆,2009
    57.张毅.水溶性量子点碲化镉测定同型半胱氨酸的研究.分析测试学报,2008,27(8):844-847
    58.张渝阳,高鹏,赵坤等.CdTe量子点标记的DNA电化学传感器的研究.分析测试学报,2009,28(5):515-518
    59.张裕平,左国强,许光日等.微波聚合快速制备分子印迹毛细管电色谱整体柱.高等学校化学学报,2007,28(9):1654-1656
    60.邹明强,杨蕊,李锦丰等.量子点的光学特征及其在生命科学中的应用.分析测试学报,2005,24(6):133-137
    61. Ansell R J, Mosbach K. Magnetic molecularly imprinted polymer beads for drug radioligand binding assay. Analyst,1998,123(7):1611-1616
    62. Arminda A, Beatriz O, Paulo H. Determination of ethyl carbamate in alcoholic beverages:an interlaboratory srudy to compare HPLC-FLD with GC-MS methods. Analytical and Bioanalytical Chemistry,2005,382(2):498-503
    63. Banerjee S, Wong S S. In situ quantum doc growth on multiwalled carbon nanotubes. Journal of the American Chemical Society,2003,125(34):10342-10350
    64. Bao F, Yao J L, Gu R A. Synthesis of magnetic Fe2O3/au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced raman spectroscopy. Langmuir,2009,25(8):10782-10787
    65. Chen J L, Gao Y C, Xu Z B, et al. A novel fluorescent array for mercury(II)ion in aqueous solution with functionalized cadmium selenide nanoclusters. Analytica Chimica Acta,2006,577(1):77-84
    66. Chen L G, Liu J, Zeng Q L et al. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. Journal of Chromatography A,2009,1216(18):3710-3719
    67. ChenY F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Journal of the American Chemical Society,2002,74(19):5132-5138
    68. Wu D G, Kordesch M E, Van Patten P G. A new class of capping ligands for CdSe nanocrystal synthesis. Chemistry of Materials,2005,17(25),6436-6441
    69. Deng Z T, Cao L, Tang F Q, et al. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis. Journal of Physical Chemistry B,2005,109(35):16671-16675
    70. Dickert F L, Hayden O, Bindeus R, et al. Bioimprinted QCM sensors for virus detection-screening of plant sap. Analytical and Bioanalytical Chemistry,2004, 378(8):1929-1934
    71. Ding S Y, Chen J X, Jiang H Y, et al. Application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue. Journal of Agricultural and Food Chemistry,2006,54(17):6139-6142
    72. Fang Y J, Yan S L, Ning B, et al. Flow injection chemiluminescence sensor using molecularly imprinted polymers as recognition element for determination of maleic hydrazide. Biosensors and Bioelectronics,2009,24(8):2323-2327
    73. Filigenzi M S, Puschner B, Aston L S, et al. Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry. Journal of Agricultural and Food Chemistry,2008,56(17):7593-7599
    74. Gaponik N, Talapin D V, Rogach A L, et al. Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes. Journal of Physical Chemistry B,2002, 106(29):7177-7185
    75. Goldman E R, Clapp A R, Anderson G P, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analytical Chemistry,2004,76(3):684-688
    76. Hines M A, Guyot S P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe Nanocrystals. Journal of Physical Chemistry,1996,100(2):468-471
    77. Hong X P, Peng T Z. Preparation of the polymer-coated magnetic microsphere modified with carboxyl group and its analytical application. Chinese Journal of Analytical Chemistry,2003,31(7):789-793
    78. Jasieniak J, Bullen C, Embden J, et al. Phosphine-free synthesis of CdSe nanocrystals. Journal of Physical Chemistry B,2005,109(44):20665-20668
    79. Ji X, Zheng J, Xu J, et al. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. Journal of Physical Chemistry B,2005,109(9):3793-3799
    80. Ji Y S, Yin J J, Xu Z G, Zhao C D et al. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Analytical and Bioanalytical Chemistry,2009,395(4):1125-1133
    81. Klejidus B, Morsvcova J, Kuban V. Reversed-phase high-per-formance liquid chromatographic/mass pectrometric method for separation of 4-methylimidazole and 2-acetyl-4-(1,2,3,4-tetrahydroxybutyl) imidazole at pg levels. Analytica Chimica, 2003,477:49-58
    82. Klimov V L, Mikhailovsky A A, McBranch D W, et al. Quantization of multiparticle auger rates in semiconductor quantum dots. Science,2000,287(5455):1011-1013
    83. Lachenmeier D W, Nerlich U, Kuballa T. Automated determination of ethyl carbamate in stone-fruit spirits using headspace solid-phase microext raction and gas chromatography-tandem mass spectrometry. Journal of Chromatography A,2006, 1108(1):116-120
    84. Lai J P, Yang M L, Niessner R, Knopp D. Molecularly imprinted microspheres and nanospheres for di(2-ethylhexyl)phthalate prepared by precipitation polymerization. Analytical and Bioanalytical Chemistry,2007,389(2):405-412
    85. Liao Y F, Li W J. Synthesis of CdSe quantum dots via paraffin liquid and oleic acid. Zhejiang Univ-Sci. A,2008,9 (1):133-136
    86. Lin C I, Joseph A K, Chang C K, et al. Molecularly imprinted polymeric film on semiconductor nanoparticles analyte detection by quantum dot photoluminescence. Journal of Chromatography A,2004,1027(1-2):259-262
    87. Lin C I, Joseph A K, Chang C K, et al. Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells. Biosensors and Bioelectronics,2004,20(1):127-131
    88. Lingerfelt B M, Mattoussi H, Goldman E R, et al. Preparat ion of quantum dot-biotin conjugates and their use in immunochromatography assays. Analytical Chemistry, 2003,75(16):4043-4049
    89. Lorenzo C A, Concheiro A. Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. Journal of Controlled Release,2002,80 (1-3): 247-257
    90. Mahony J O, Nolan K, Smyth M R, et al. Molecularly imprinted polymers-potential and challenges in analytical chemistry. Analytica Chimica Acta,2005,534 (1):31-39
    91. Mishra A, Wernsdorfer W, Abboud K A, et al. Initial observation of magnetization hysteresis and quantum tunneling in mixed manganese-lanthanide single-molecule magnets. Journal of the American Chemical Society,2004,126(48):15648-15649.
    92. Nilsson J, Spegel P, Nilsson S. Molecularly imprinted polymer formats for capillary electrochromatography. Journal of Chromatography B,2004,804(1):3-12
    93. Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society,2001,123(1): 183-184
    94. Perez-Moral N, Mayes A G. Comparative study of imprinted polymer particles prepared by different polymerisation methods. Analytica Chimica Acta,2004,504(1): 15-21
    95. Petit C, Lixon P, Pileni M P. Synthesis of cadmium sulfide in situ in reverse micelles influence the interface on the growth of the particles. Journal of Physical Chemistry, 1990,94(4):1598-1603
    96. Qi D W, Lu J, Deng C H, et al. Magnetically responsive Fe3O4@C@SnO2 core-shell microspheres:synthesis, characterization and application in phosphoproteomics. Journal of Physical Chemistry C,2009,113(36):15854-15861
    97. Qu L H, Peng Z A, Peng X G. Alternative routes toward high quality CdSe nanocrystals. Nano Letters,2001,1(6):333-337
    98. Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society,2002,124 (9):2049-2055
    99. Reiss P, Protiere M, Li L. Core/shell semiconductor nanocrystals. Small,2009,5(2): 154-168
    100.Sellergren B, Karmalkar R N, Shea K J. Enantioselective ester hydrolysis catalyzed by imprinted polymers. The Journal of Organic Chemistry,2000,65(13):4009-4027
    101.Shavel A, Gaponik N, Eychmuller A. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. Journal of Physical Chemistry B,2004,108(19):5905-5908
    102.Sibel E D, Ridvan S, Sibel B, et al. Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta,2008,75(4):890-896
    103.Somchai B, Virapong P, Leif B, Lei Y. Molecularly imprinted polymer microspheres prepared by precipitation polymerization using a sacrificial covalent bond. Journal of Applied Polymer Science,2006,99,1390-1398
    104.Talapin D V, Rogach A L, Shevchenko E V,et al. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. Journal of the American Chemical Society,2002,124(20):5782-5790
    105.Tamayo F G, Martin E A. Selective high performance liquid chromatography imprinted-stationary phases for the screening of phenylurea herbicides in vegetable samples. Journal of Chromatography A,2005,1098(1-2):116-122
    106.Trindade T, O'Brien P, Pickett N L. Nanocrystalline semiconductors:synthesis, properties, and perspectives. Chemistry of Materials,2001,13 (11),3843-3858
    107.Tully E, Hearty S, Leonard P, et al. The development of rapid fluorescence-based immunoassays,using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. International Journal of Biological Macromolecules,2006,39(1-3):127-134
    108.Turkewitsch P, Wandelt B, Darling G D. Fluorescent functional recognition sites through molecular imprinting:A Polymer-based fluorescent chemosensor for aqueous cAMP. Journal of the American Chemical Society,1998,70(10):2025-2030
    109.Vlatakis G, Andersson LI, Miiller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature,1993,361(18):645-647
    110.Wang H F, Yu H, Tianrong J, et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Analytical Chemistry,2009,81(4):1615-1621
    111.Wang J, Liu G D, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society,2003, 125(11):3214-3215
    112.Woggon U. Optical properties of semiconductor quantum dots. Springer Tracts in Modern Physics,1997,136:245-249
    113.Xia Y Q, Guo T Y, Song M D, et al. Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. Reactive & Functional Polymers,2006, (66):1734-1740
    114.Xue X H, Pan J, Xie H M, et al. Fluorescence detection of total count of escherichia coli and staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta,2009,77(5):1808-1813
    115.Yamazak T, Yilmaz E, Mosbach K, et al. Towards the use of molecularly imprinted polymers containing imidazoles and bivalent metal complexes for the detection and degradation of organophosphotriester pesticides. Analytica Chimica Acta,2001, 435(1):209-214
    116.Yan N, Zhou L, Zhu Z F, Chen X G. Determination of melamine in dairy products, fish feed, and fish by capillary zone electrophoresis with diode array detection. Journal of Agricultural and Food Chemistry,2009,57 (3):807-811
    117. Ye L, Yu Y H, Mosbach K. Towards the development of molecularly imprinted artificial receptors for the screening of estrogenic chemicals. Analyst,2001,126(6): 760-765
    118.Yin Y D, Alivisatos A. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature,2005,437(7059):664-670
    119.Yokley R A, Mayer L C, Rezaaiyan R, et al. Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD. Journal of Agricultural and Food Chemistry,2000,48(8):3352-3358
    120.Zhang L, Qiao S Z, Jin Y G,et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals:Fabrication and structure control. Advanced Material,2008,20(4):805-809
    121.Zhang Y, Liu R J, Hu Y L et al. Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Analytical Chemistry,2009,81(3):967-976
    122.Zhong W Y, Liang J R, Yu J S. Systematic study of the interaction of cobalt ions with different-sized CdTe quantum dots. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2009,74(3):603-606
    123.Zhou H J, Zhang Z J, He D Y, et al. Flow through chemiluminescence sensor using molecularly imprinted polymer as recognition elements for detection of salbutamol. Sensors and Actuators B,2005,107(2):798-804

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700