电动力技术修复尾砂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿含有大量的重金属离子,大多数尾矿没有采取处理措施,只是暂时堆存,已经成为矿区重要的污染源,尾砂中重金属元素的释放、迁移,会对附近土壤环境产生重金属污染,进而导致土壤质量下降,生态系统退化,水污染,农作物减产,对当地的环境构成严重的威胁。人们开始重视尾砂矿区的生态修复问题。在国内外研究的基础,本文研究了湖南省铜山岭铅锌矿尾砂重金属在电动技术处理情况下的去除情况,并采用优化的BCR(European Community Burean of Reference)连续提取方法对重金属Pb、Zn、Cu进行形态分析,研究在电动力技术条件下重金属及其各种形态的去除效果。
     电动修复技术是国际环境科学和工程领域的前沿课题之一。它的基本机理是:土壤中的水在电场力的作用下发生电解反应,阴极产生氢气和氢氧根离子,阳极产生氧气和氢离子,阳极产生的氢离子在电场和浓度梯度的作用下,向土壤内部迁移和扩散,氢离子在迁移和扩散的过程中,置换和溶解土壤中的重金属污染物,被溶解后的重金属污染物在电场和浓度梯度的作用下,以离子迁移和电渗的方式朝阴极方向定向迁移,从而达到去除土壤污染物的目的。
     本文首先进行了电动力技术对尾砂的适应性研究。经过7天的电动实验,结果表明:重金属Pb、Zn和Cu的总去除率分别为26.5%、24.4%和30.7%,其中酸溶态去除效果显著,分别达到47.8%、73.4%和71.3%。Pb和Cu的铁-锰氧化物结合态去除率为30.1%和35.1%,其他形态去除率较低,在8%左右。电动力修复技术适用于铅锌尾砂修复,但由于尾砂pH值影响尾砂中重金属的存在形态,还影响尾砂的电导率,最终影响尾砂重金属的修复效率,因此,必须对修复技术进行改进才能更有效的进行尾砂修复。
     在前面研究的基础上,实验II和实验III研究了改进电动技术对尾砂重金属的处理情况,分别采用了中间循环冲洗技术和阴极循环冲洗技术。经过7天的电动实验,实验II结果表明:重金属Pb、Zn、Cu的总去除率分别为40.8%,36.9%和45.1%,此次改进电动技术,重金属的去除率有了明显的提高,与未采用改进电动技术相比,重金属Pb、Zn、Cu的去除率分别提高了14.3%,12.5%和14.4%,其中酸溶态去除效果显著,分别达到62.4%,84.8%和80.8%,与未采用改进电动技术相比,去除率分别提高了14.6%,11.1%和9.5%。其他形态的重金属去除率液略有提高。实验III结果表明:重金属Pb、Zn、Cu的总去除率分别为39.3%,37.3%和50%,重金属的去除率也有了明显的提高,与未采取改进技术相比,去除率分别提高了12.8%,12.9%和19.3%。其中,酸溶态去除效果显著,Pb、Zn和Cu的去除率分别为69.8%,85.8%和83.5%,与未采用改进电动技术相比,去除率分别提高了22%,12.4%和12.2%。其他形态的重金属去除率液也略有提高。
There are many heavy metals in the mine tailings. Most of the tailings have been left without any management. It has become the main source of heavy metal contamination in the mining areas, which including soil substrates contaminated, soil texture destroyed, short of nutrient, ecological landscape destroyed, water pollution and biological diversity decrease。Work should do to restore the ecology on mined areas. Basing on the research ago, The elecrokinetic technique for removing heavy metals in a Lead-Zinc mine tailing was examined. The redistributions of Pb, Zn and Cu were determined using the sequential extraction procedure of the optimized European Community Burean of Reference (BCR) before and after the examination.
     Electroremediation technique is an advancing task of global environment science and technology. Its principle is that: application of direct electric current via electrodes immersed in a saturated soil results in oxidation at the anode, generating an acid front that cause desorption and dissolution of heavy metals. The desorped and soluted heavy metals are migrated toward cathode reservoir by electric field and ions concentration grads by the means of electromigration, electroosmosis and diffusing.
     Firstly, a series of elecrokinetic technique tests about mine tailings are conducted. The results showed that total removal efficiencies of Pb, Zn and Cu were 26.5%, 24.4% and 30.7% respectively after electroremediation for seven days. The removal efficiencies of acid extraction fraction of Pb, Zn and Cu were 47.8%, 73.4% and 71.3%.The removal efficiencies of Fe and Mn oxides fraction of Pb and Cu were 30.1% and 35.1%. The removal efficiencies of other fractions were only about 8%. The electroremediation technology is efficient to remedy the Lead-Zinc mine tailing. pH value of the soil decreased electro-conductivity of soil, and then reduce remediation efficiency by precipitating of heavy metals. Hence, electroremediation techniques should be enhanced so as to efficiently remove Pb from contaminated red soil.
     Secondly, a series of experiments used enhancement elecrokinetic technique are conducted. Experiment II is conducted by the middle recycle washing technology. The results showed that total removal efficiencies of Pb, Zn and Cu was 40.8%,36.9%and45.1% respectively after electroremediation for seven days. Contrasted to experiment I, the removal efficiencies was increased by 14.3 %,12.5%and 14.4%respectively. The removal efficiencies of acid extraction fraction of Pb, Zn and Cu were 62.4% ,84.8 % and 80.8 % . Contrasted to experiment I, the removal efficiencies was increased by 14.6%,11.1%and 9.5%. The removal efficiencies of other fractions of the heavy metals are also increased.Experiment III is conducted by controlling pH value of the cathode reservoir with HAc. The results showed that total removal efficiencies of Pb, Zn and Cu was 39.3%,37.3%and 50% respectively after electroremediation for seven days. Contrasted to experiment I, the removal efficiencies was increased by 12.8%,12.9%and 19.3%respectively. The removal efficiencies of acid extraction fraction of Pb, Zn and Cu were69.8%,85.8%and 83.5%. Contrasted to experiment I, the removal efficiencies was increased by 22%,12.4%and 12.2%. The removal efficiencies of other fractions of the heavy metals are also increased.
引文
[1] 高太忠,李景印. 土壤重金属污染研究与治理现状. 土壤与环境,1999, 8(2): 137-140
    [2] 李国刚. 中国土壤环境监测的现状、问题与对策. 环境监测管理与技术,2005,17(1): 8-10.
    [3] 温志良,莫大伦 . 土壤污染研究现状与趋势 . 重庆环境科学, 2000,22(3):55-57
    [4] 郑喜珅,鲁安怀,高翔,等. 土壤重金属污染现状与防治方法. 土壤与环境,2002,11(1): 79-84
    [5] 夏星辉, 陈静生. 土壤重金属污染治理方法研究进展. 环境科学,1997,18(3): 72-75
    [6] 丛艳国,魏立华. 土壤环境重金属污染物来源的现状分析. 现代化农业,2002,270(1): 18-20
    [7] 廖自基. 环境中微量重金属元素的污染危害与迁移转化(第一版), 北京: 科学出版社. 1989:25-60
    [8] 龚子同,黄 标. 关于土壤中“化学定时炸弹”及其触爆因素的探讨. 地球科学进展,1998,13(2): 184-191
    [9] 张甘霖,龚子同. 世纪之交土壤学研究的挑战与契机. 土壤与环境,1999,8(2): 130-136
    [10] 高 太 忠 , 李 景 印 . 土 壤 重 金 属 污 染 研 究 与 治 理 现 状 . 土 壤 与 环 境 ,1999,8(2): 137-140
    [11] 黄亚军,屈明.重金属环境化学行为与毒理学研究.环境卫生工程,2003,12(2): 80-82
    [12] 张春艳,韩宝平,王晓,等. 典型城市工业区 TSP 中重金属污染研究. 中国环境监测,2007, 23(2): 71-74
    [13] 王浩,陈玉松,胡开林,等. 污水灌溉研究综述. 江苏环境科技 2007,20(2): 73-76
    [14] 蔡嗣经,杨鹏.金属矿山尾矿问题及其综合利用与治理.中国工程科学,2000,12(14):89-92
    [15] Chen T C and Hong A. Chelating extraction of lead and copper from an authentic contaminated soil using N-(2-acetamido)iminodiacetic acid and S-carboxymethy-L-cysteine. Journal of Hazardous Materials,1994,41(1): 147-160
    [16] 茹淑华,孙世友,王凌,等. 蔬菜重金属污染现状、污染来源及防治措施. 河北农业科学,2006,10(3):88-91
    [17] Markus J and McBratney. A review of the contaminated of soil with lead Ⅱ. Spatial distribution and risk assessent of soil lead. Environment International, 2001,27(3):399-411
    [18] Wang S Q, Zhou D M, Wang Y J and Chen H M. Effect of o-phenylenediamine on Cu adsorption and desorption in red soil and its uptake by paddy rice (oryza sativa).Chemosphere, 2003,51(2):77-83
    [19] Raskin I,Ensley B D. Phytoremediation of toxic metals:using plants to clean up the environment.John Wiley and Sons,2000,10(2),23-25
    [20] 陈志良,仇荣亮.重金属污染土壤的修复技术. 环境保护, 2002,29(6):21-23
    [21] 黄国强,李 凌,李鑫钢,等. 土壤污染的原位修复. 环境科学动态,2000,(3): 25-27
    [22] 将建国,吴学龙, 王伟,等. 重金属废物稳定化处理技术现状及发展. 新疆环境保护,2000,22(1): 6-10
    [23] 李永涛,吴启堂. 土壤污染治理方法研究. 农业环境保护,1997,16(3): 118-122
    [24] 丁 园. 重金属污染土壤的治理方法. 环境与开发,2000,13(2): 25-28
    [25] 夏星辉, 陈静生. 土壤重金属污染治理方法研究进展. 环境科学,1997,18(3): 72-75
    [26] 骆永明. 金属污染土壤的植物修复。土壤,1999,30(5): 261-265
    [27] 陈怀满. 土壤-植物系统中的重金属污染。北京:科学出版社,1996:71-125
    [28] 周国华,黄怀曾,何红蓼. 重金属污染土壤植物修复及进展,环境污染治理技术与设备,2002,6(3): 33-39
    [29] 魏树和,周启星. 重金属污染土壤植物修复基本原理及强化措施探讨,生态学杂志,2004,(1): 65-72
    [30] 邢新会. 环境生物修复技术的研究进展. 化工进展,2004 ,23(6) :579-584
    [31] 钱署强,刘 铮. 污染土壤修复技术介绍. 化工进展,2000,(4): 10-12
    [32] Acar Y B, Alshawabkeh A N. Principle of electrokinetic remediation. Environmental Science and Technology, 1993,27 (13) : 2638 -2647
    [33] Richard E. Saichek, Krishna R.Reddy. Effect of pH control at the anode for the elecrokinetic removal of phenanthrene from kaolin soil. Chemosphere,2003,(51): 273-287
    [34] Park J S, Kim S O, Kim K W et al. Numerical analysis for electrokinetic soil processing enhanced by chemical conditions of the electrode reservoirs. Hazardous Materials B,2003,99(2): 71-88
    [35] Haran B S, Popov B N, and White R E. Development of a newelectrochemical technique for decontamination of hexavalent chromium from low surface charged soils. Environmental Progress,1996,15(3): 166-172
    [36] 钱暑强,金卫华,刘铮.从土壤中去除 Cu2+的电修复过程.化工学报,2002,53(3):236-240
    [37] 袁华山,刘云国,李欣.电动力修复技术去除城市污泥中的重金属研究.中国给水排水,2006,22(3): 101-104
    [38] Reddy K R, Chaparro C, Saichek R E. Iodide-enhanced electrokinetic remediation of mercury-contaminated soils. Environmental Engineering, 2003, 129(12): 1137-1148
    [39] Chung H I, Kamon M. Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils. Engineering Geology, 2005,77(2):233-242
    [40] Ottosen L M, Hansen H K, Ribeiro A B et al. Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. Hazardous Materials, 2001,B85(1):291-299
    [41] Weng C H, Yuan C, Tu H H. Removal of trichloroethylene from caly soil by series-electrokinetic process. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2003,7(1): 25-30
    [42] Reddy K R, Chinthamreddy S. Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. Geotechnical Geoenvironmental Engineering , 2003, 129(3): 263-277
    [43] D.Turer, A.Genc. Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis.Journal of Hazardous Materials, 2005,B119(1): 167-174
    [44] 罗启仕,王慧,张锡辉,等.土壤中 2,4-二氯酚在非均匀电动力学作用下的迁移.环境科学学报,2004,24(6): 1104-1109
    [45] Zhou D M, Zorn R, Czurda K. Electrochemical remediation of copper contaminated kaolinite by conditioning anolyte and catholyte pH simultaneously. Environmental Sciences,2003,15(3): 396-400
    [46] Yeung A T, Hsu C, Menon R M. Physicochemical soil-contaminant interactions during electrokinetic extraction. Hazardous Materials, 1997, 55(2):221-237
    [47] Thoming J, Kliem B K, Ottosen L M. Electrochemically enhanced oxdation reactions in sandy soil polluted with mercury. The Science of the Total Environment,2000,261(1):137-147
    [48] Kim S, Moon S, Kim K. Removal of heavy metals from soils usingenhanced electrokinetic soil processing. Water, Air and Soil pollution, 2001, 125(3): 259-272
    [49] Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere,2004,56(2):265-273
    [50] Sawada A, Tanaka S, Fukushima M et al. Electrokinetic remediation of clayey soils containing copper(Ⅱ)-oxinate using humic acid as a surfactant. Hazadous Material B,2003,96(2):145-154
    [51] Maini G, Sharman A K, Sunderland G et al. An Integrated Method Incorporating Sulfur-Oxidizing Bacteria and Electrokinetics To Enhance Removal of Copper from Contaminated Soil. Environmental Science and Technology, 2000,34(6): 1081-1087
    [52] Yang J W, Lee Y J, Park J Y et al. Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Engineering Geology,2005,77(1):243-251
    [53] Kolosov A Y, Popov K I, Shabanova N A et al. Electrokinetic removal of Hydrophobic organic compounds from soil. Applied Chemistry, 2001, 74(4): 631-635
    [54] Castellote M, Andrade C, Alonso C. Nondestructive decontaminateion of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals. Environmental Science and Technology, 2002, 36(10): 2256-2261
    [55] Ko S, Schlautman M A, Carraway E R. Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environmental Science and Technology, 2000, 34(8): 1535-1541
    [56] Sidolio, Connor S, Lepp N W, Edwards R ea al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale fasibility study. Environmental Monitoring and Assessment,2000,84(3): 141-158
    [57] Manna M, Sanjay K, Shekhar R. Electrochemical cleaning of soil contaminated with a dichromate lixiviant. Mineral Process,2003,72(1): 401-406
    [58] Reed, R. B., Berg, M. T., Thompson, J. C., and Hatfield, J. H. Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam. Environmental Engineering,1995, 121(11): 805-815
    [59] Grundl, T., and Reese, C. Laboratory study of electrokinetic effects in complex natural sediments. Hazardous. Materials,1997, 55(3): 187-201
    [60] Wong J S H, Hcks R E, Probstein R F. EDTA-enhanced electroremediation of metal-contaminated soils. Hazardous Materials,1997,55(2): 61-79
    [61] Reddy K R, Donahue M, Sassaoka R. Preliminary assessment of electrokinetic remediation of soil and sludge contaminated with mixed waste. Air Waste Management Association,1999,49(1): 823-830
    [62] Cox, C. D., Shoesmith, M. A., and Ghosh, M. M. Electrokinetic remediation of mercury-contaminated soils using iodine/iodide lixiviant. Environment Science and Technology,1996, 30(6): 1933-1938
    [63] Suèr P, Allard B. Mercury transport and speciation during electrokinetic soil remediation. Water, Air and Soil Pollution,2003,143(2): 99-109
    [64] Reddy K R, Parupudi U S. Removal of chromium, nikel and cadmium from clays by in-situ electrokinetic remediation. Soil Contaminant,1997,6(4): 391-407
    [65] Yeung A T, Hsu C, Menon R M. Physicochemical soil-contaminant interactions during electrokinetic extraction. Hazardous Material, 1997, 55(2):221-237
    [66] Gèrland J. Zagury, Yves Dartiguenave and Jean-Claude Setier. Ex situ electroreclamation of heavy mentals contaminated sluge: Pilot scale study. Environment Engineering,1999, 125(10): 972-978
    [67] Akram N. Alshawabkeh and Yalcin B Acar. Electrokinetic remediation.Ⅱ: Theoretical model. Geotechnical Engineering,1996, 122(3): 186-196
    [68] Maini G, Sharman A K, Sunderland G et al. An Integrated Method Incorporating Sulfur-Oxidizing Bacteria and Electrokinetics To Enhance Removal of Copper from Contaminated Soil. Environment Science and Technology, 2000,34(6): 1081-1087
    [69] Rabbi M F, Clark B, Gale R J et al. In situ TCE bioremediation study using electrokinetic cometabolite injection. Waste Management,2002,20(2): 279-286
    [70] Sidolio, Connor S, Lepp N W, Edwards R ea al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale fasibility study. Environmental Monitoring and Assessment,2000,84(1): 141-158
    [71] Reddy K R, Parupudi U S. Removal of chromium, nikel and cadmium from clays by in-situ electrokinetic remediation. Soil Contaminant,1997,6(4):391-407
    [72] Ho S V, Athmer C J, Sheridan P W et al. The Lasagna thechnology for insitu soil remediation in small field test. Environment Science and Technology,1999,33(7): 1086-1091
    [73] Haran B S, Popov B N, and White R E. Development of a new electrochemical technique for decontamination of hexavalent chromium from low surface charged soils. Environmental Progress,1996,15(3): 166-172
    [74] Ho S V, Athmer C J, Sheridan P W et al. Scale-up aspects of the LasagnaTM process for in situ soil decontamination. Hazardous Materials,1997,55(2): 39-60
    [75] Roulier M, Kemper M, Al-Abed S et al. Feasibility of electrokinetic soil remediation in horizontal LasagnaTM cells. Hazardous Materials,2000, B77(1):161-176
    [76] Puppala S K, Alshawabkeh A N. Acar Y B et al. Enhanced electrokintic remediation of high sorption capacity soil. Hazardous Materials, 1997, 55(1): 203-220
    [77] Reddy K R. Chinthamreddy S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Management, 1999,19(1):269-282
    [78] 鲁如坤主编.土壤农业化学分析方法. 北京:中国农业科技出版社, 1999:122-130
    [79] 于天仁 . 土壤电化学性质及其研究方法(第二版) ,北京 : 科学出版社,1976,75-79
    [80] 莫争等. 重金属 Cu、Pb、Zn、Cr、Cd 在土壤中的形态分布和转化. 农业环境保护,2002,21(1): 9-12
    [81] 黄亚军,屈明.重金属环境化学行为与毒理学研究.环境卫生工程,2003,12(2): 80-82
    [82] Sutherland R A, Tack F M G. Fractionation of Cu Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 2003, 8(2): 37-50
    [83] 张慧智,刘云国,魏薇等.湖南省矿山尾砂土壤污染现状分析.矿冶工程,2004,24(5):27-30
    [84] 邓昌芬,周东美,仓龙.铜尾矿砂电动增强处理过程研究.农业环境科学学报,2005,24(1): 55-59
    [85] Mohamed A M O. Remediation of heavy metal contaminated soils viaintegrated electrochemical processes. Waste Management,1996,16(8): 741-747
    [86] Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere, 2004, 56(3):265-272