用户名: 密码: 验证码:
抗生素菌渣堆肥化处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素菌渣是抗生素生产企业在生产过程中产生的废弃物,因其含有一定量的抗生素残留而被国家有关部门列为危险废弃物,不合理的处理方法极易造成环境污染和生态危害,同时也会造成资源浪费。为了探讨抗生素菌渣堆肥化处理的可行性,本试验分别进行了青霉素菌渣、林可霉素菌渣与牛粪的联合堆肥试验,通过测定堆制过程中的基本理化性质(温度、含水量、pH)、植物毒性(种子发芽指数、芽长抑制率、根长抑制率)、抗生素残留量、肥效指标(总氮、水溶性总氮、水溶性总磷)、微生物的变化来考察堆肥的腐熟度、安全性及菌渣堆肥与普通牛粪堆肥的不同。得到的主要试验结果如下:
     1.青霉素菌渣与牛粪的堆肥试验
     堆肥过程中,T1、T2温度在50℃以上的时间超过一周,符合堆肥无害化卫生标准;堆肥结束时,三个处理的pH值分别为8.62、8.58和8.55,符合腐熟堆肥pH值在8.0-9.0的标准;堆肥结束时,三个处理的种子发芽指数均在50%以上,达到了基本无植物毒性的水平;堆肥过程中,T1、T2温度大于40℃,青霉素已失活;堆肥过程中,T1、T2高温持续期长,氮素损失严重;三个处理的微生物数量没有显著差异,但T1、T2中微生物种类明显少于T3。
     2.林可霉素菌渣与牛粪的堆肥试验
     堆肥过程中,各处理温度在50℃以上均保持了7d以上,符合堆肥无害化卫生标准;堆肥结束时,各处理pH均满足8.0-9.0的腐熟堆肥pH标准;堆肥结束时,五个处理的种子发芽指数均在70%以上,芽长抑制作用消失,根长抑制率也大大减小,堆肥已基本无植物毒性;堆肥结束时,T1、T2、T4的林可霉素残留已全部被降解,T3的林可霉素含量降解了99.7%;水溶性总氮呈减小趋势,氮素损失严重,水溶性总磷比堆肥开始时也有所降低;菌渣堆肥中放线菌数量抑制严重,微生物种类远远少于对照。
     3.林可霉素菌渣堆肥对土壤微生物的影响
     菌渣堆肥对土壤中微生物的增殖有很好的促进作用,且效果好于普通牛粪堆肥;菌渣堆肥对土壤中微生物的多样性没有显著的破坏作用。
     通过试验得出结论,菌渣堆肥中抗生素残留已基本降解,堆肥成品基本达到无害化标准,所以可以将堆肥作为抗生素菌渣资源化利用途径之一。
The antibiotic mushroom dregs were the wastes during the production process of antibiotic enterprises. The wastes were grouped into the hazardous wastes because of residual antibiotics by national departments concerned. The inappropriate treatments on these wastes could cause environmental pollution, ecological risk and resource waste. To research the feasibility of composting treatment on antibiotic mushroom dregs, we designed the co-composting with cattle manure by penicillin mushroom dregs and lincomycin mushroom dregs respectively. To investigate the compost maturity, compost security and the differences between composts with antibiotic mushroom dregs and compost by cattle manure, we determined the basic physicochemical properties(temperature, water content, pH), phytotoxicity(seed germination indexes, inhibition rates of the sprout length, inhibition rates of the root length), antibiotic residuals, fertility indexes(total nitrogen, water-soluble nitrogen, water-soluble phosphorus), microbial changes during compost. The main results were as follows:
     1. Study on the co-composting of penicillin mushroom dregs and cattle manure
     During composting, the time of temperature over 50℃of T1 and T2 was more than a week, which accord with the composting health standard. After composting, pH of three treatments was 8.62,8.58 and 8.55 respectively, which accorded with the matured compost standard demanding pH between 8 and 9. After composting, seed germination indexes were above 50%, achieved the practical non-phytotoxicity level. During composting, temperatures of T1 and T2 were above 40℃and penicillin was deactivated. During composting, the thermophilic phases of T1 and T2 lasted long and nitrogen losses were seriously. The microbe quantities of three treatments had no significant difference, but microbe species of T1 and T2 were less than that of T3 obviously.
     2. Study on the co-composting of lincomycin mushroom dregs and cattle manure
     During composting, Time of temperature over 50℃of all treatments was more than 7d, which accorded with the composting health standard. After composting, pH of all treatments accorded with the matured compost standard demanding pH between 8 and 9. After composting, seed germination indexes were all above 70%. The inhibition of compost on bud length disappeared. The inhibition rates of the root length also reduced greatly. Compost had achieved the practical non-phytotoxicity level. After composting, the lincomycin of T1、T2、T4 were all degraded and that of T3 was degraded 99.7%. The content of water-soluble nitrogen decreased, nitrogen losing seriously. The population of actinomycetes was inhibited seriously. Microbe species were far more less than the control.
     3. effect of the compost with lincomycin mushroom dregs on soil microbes
     The compost with lincomycin mushroom dregs played a good part in promoting the microbe proliferation and the effect was better than that of cattle manure. The compost with mushroom dregs has no significant destruction for microbial diversity.
     4. Screening for lincomycin-degrading strains
     We had screened out three bacterial strains and nine fungal strains. The degrading strains we screened out all can degrade lincomycin in some extent. Among them, zh5 had the best effect, the degradation rate of lincomycin in 20d reaching 13.24%.
     From the tests we know:The residual antibiotics were degraded and composting products had reached harmless standard basically. So composting can be regarded as a resourceful utilization way of the antibiotic mushroom dregs.
引文
[1]周桂莲,蒋宗勇,林映才.饲用抗生素在畜禽体内残留及消除规律研究进展[J].饲料工业,2007,28(4):1-8
    [2]Bruce J R, Paul K S L, Michael M. Emerging chemicals of concern:Pharmaceuticals and personal care products(PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin,2005,50:913~920
    [3]王丽平,章明奎,郑顺安.土壤中恩诺沙星的吸附-解吸特性和生物学效应[J].土壤通报,2008,39(2):393~397
    [4]Volmer D A, Hui J P. Study of erythromycin decomposition products in aqueous solution by solid-phase microextraction liquid chromatography/tandem mass 8pectrometry[J]. Rapid Commun Mass Spectrom,1998,12(3):123~129
    [5]陈兆坤,胡昌勤.头孢菌素类抗生素的降解机制[J].国外医药:抗生素分册,2004,25(6):249-265
    [6]潘祖亭,颜承农,王润涛.金属离子催化p-内酰胺类抗生素水解的荧光光谱研究[J].分析试验室.2001,20(4):1-4
    [7]Keith A L, Craig D A, Michael T M, et al. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics[J]. J Environ Qual,2008,37:378~386
    [8]杨桂朋,孙晓春.海水中农药的光化学降解研究[J].中国海洋大学学报,2007,37(4):550-556
    [9]张卫.农药阿维菌素在环境中的降解和代谢研究[D].浙江杭州:浙江大学农药学系,2004
    [10]Hu C Q, Gu D Z, Chang G L, et al. Studies on the characteristics of photolytic reaction of quinolone antibiotics[J]. Acta Pharm Sinica,1999,34(11):848
    [11]崔馨.土霉素对生菜的植物毒性及其在金属离子溶液中的光解[D].辽宁大连:大连理工大学环境工程系,2007
    [12]Jung J Y, Younghee K, Jungkon K, et al. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna [J]. Ecotoxicology,2008,17(1): 37-45
    [13]庞胜华,刘德明.固定化活性污泥处理抗生素废水扩散模型的研究[J].福建化工,2005(5):61-63
    [14]刘伟,王慧,陈小军等.抗生素在环境中降解的研究进展[J].动物医学进展,2009,30(3):89~94
    [15]张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J].生态与农村环境学报,2008,24(3):69~73
    [16]Sarmah A K, Meyer M T, Boxall A B. A global perspective on the uses, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs) in the environment[J]. Chemosphere,2006,65(5):725~759
    [17]Schlusener M P, Bester K. Persistence of antibiotics such as macrolides tiamulin and salinomycin in soil[J]. Environmental Polluion,2006,143(3):565~571
    [18]Heather N S, Kim S C, Kathy C D, et al. Response of antibiotics and resistance genes to high-intensity and low-intensity manure managemen[J]. Environ Qual 2007,36:1695~ 1703
    [19]Holly D, Satish G, Sally N. Antibiotic degradation during manure composting[J]. Environ Qual,2008,37:1245-1253
    [20]张树清,张夫道,刘秀梅等.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337-343
    [21]匡光伟,孙志良,陈小军等.四环素类抗菌药物在鸡粪中的降解研究[J].农业环境科学学报,2007,26(5):1784-1788
    [22]Herve P, Nerve L B, Louis P. Experimental study on the decontamination kinetics of seawater polluted by oxytetracycline contained in effluents released from a fish farm located in a salt-marsh[J]. Aquaculture,1993,112:113~123
    [23]Beare M H, Parmelee R W, Hendrix P F, Cheng W X Coleman D, and Crossley D A. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs,1992,62(4):569-591
    [24]Dijck P V, van de Voorde H. Sensitivity of environmental microorganism to antimicrobial agents. Appl Environ Microbiol,1976,31:332~336
    [25]Zhang Y H, Luo Z W, Zha Y X. The effect of averment on the activity of soil microbiology J Jiamusi Univ(Natural ScienceEdition),2002,20(1):49-51
    [26]Wollenberger L, Halling-Sorensen B, Kusk KO. Acute and chronic toxicity of veterinary antibiotics to Daphniamagna. Chemospere,2000,40:723~730
    [27]Holten Ltzhft H-C, Halling-Srensen B, Jrgensen SE. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contami Toxicol,1999,36:1~6
    [28]Migliore L, Brambilla G, Casoria P, et al. Effects of sulphadimethoxine on barley in Laboratory terrestrial models. Agric Ecosyst Environ,1996,60:121~128
    [29]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报,2006,26(1):265-270
    [30]Davidson J. Genetic exchange between bacteria in the environment. Plasmid,1999,42: 73-91
    [31]Chee-Sanford J C, Aminov R I, Krapac I J, Garrigues-Jeanjean N, Mackie R I.2001. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 67(4):1494~1502
    [32]Seveno N A, Kallifidas D, Smalla K, Van Elsas J D, Collard JM, Karagouni A D, Wellington E M.2002. Occurrence and reservoirs of antibiotic resistance genes in the environment[J]. Reviews in Medical Microbiology,13(1):15~27
    [33]Smith M S, Yang R K, Knapp C W, Niu Y F, Peak N, Hanfel M M, Galland J C, Graham D W.2004. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR[J]. Applied and Environmental Microbiology,70(12):7372~7377
    [34]Peak N, Knapp C W, Yang R K, Hanfelt M M, Smith M S, Aga D S, Graham D W.2007. Abundance of six tetracyclin resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies[J]. Environmental Microbiology,9(1):143-149
    [35]李月海,刘冬梅,谢幼梅.抗生素菌渣的综合利用[J].山东畜牧兽医,2000,6:28-39
    [36]成建华,张文莉.抗生素菌渣处理工艺设计[J].医药工程设计杂志,2003,24(2):31-34
    [37]雷增学,雷泽曦.利用生物技术对抗生素药渣进行无害化处理的方法.中国专利:200510012998.8.2006-05-03
    [38]张东升.林可霉素发酵残渣及废水中抗生素残留的去除[D].河南郑州:河南农业大学生命科学学院,2008
    [39]农业部卫生部国家药品监督管理局公告第176号.饲料研究,2002,(09):19
    [40]申义珍,红霉素药渣有机无机复混肥对蔬菜品质、产量的影响[D].扬州:扬州大学农学院,2002
    [41]汤少红,石伟勇,董越勇.生物制药药渣资源化利用途径的研究[J].农业环境科学学报,2006,25(增刊):234~236
    [42]张树清,张夫道等.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337~343
    [43]李国学,张福锁.固体废弃物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2001
    [44]顾觉奋.抗生素[M].上海:科学技术出版社.2001:13~20
    [45]姚占芳,吴云汉.微生物学实验技术[M].北京:气象出版社,1998
    [46]GB79592-87,粪便无害化卫生标准
    [47]陈世和,张所明,城市垃圾堆肥管理与工艺[M].上海:复旦大学出版社,1990
    [48]Zucconi F, Pera A, Forte M, et al. Evaluating Toxicity of Immature Compost [J]. Biocycle. 1981,22(2):54~57
    [49]Zucconi F, Monaco A, Forte M, et al. Phytotoxins during the stabilization of organic matter[M]. London:Elsevier Applied Science Publishers,1985:73~86
    [50]V C, A K, Mf H, et al. Effect of compost maturity on growth of komatsuna (Brassica Rapa var. pervidis)in Neubauer's pot[J]. Soil Sci. Plant Nutr.1983,29:239-250
    [51]李季,彭生平.堆肥工程实用手册[M].北京:化学工业出版社,2005
    [52]秦莉,李玉春,李国学等.城市生活垃圾堆肥过程中腐熟度指标及控制参数[J].农业工程学报.2006,22(12):189-194
    [53]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002
    [54]贾程,污泥与秸秆堆肥过程中氮、磷形态[D],杨凌:西北农林科技大学,2008
    [55]Saleque M A, Naher U A, Islam A, etal. Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils[J]. Soil Science Society of America Journal,2004,68:1635-1644
    [56]单德鑫,牛粪发酵过程中碳、氮、磷转化研究(D),哈尔滨:东北农业大学,2006
    [57]王伟东.木质纤维素快速分解复合系及有机肥微好氧新工艺[D].北京:中国农业大学,2005
    [58]Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev.,1995,59:143-146
    [59]Ishii K, FukuiM, Takii S. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis[J]. Journal of Applied Micro-biology,2000, 89(5):768~777
    [60]魏自民,席北斗,赵越.生活垃圾微生物强化堆肥技术[M].北京:中国环境科学出版社,2008
    [61]黄韶华,王正荣,朱永绮.土壤微生物与土壤肥力的关系研究初报[J].新疆农垦科技,1995(3):6-7
    [62]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69
    [63]俞慎,李勇,王俊华等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422
    [64]Kennedy AC. Microbial characteristics of soil quality[J]. Journal of soil and water conservation,1995,50:243~248
    [65]史吉平,张夫道,林葆.长期施肥对土壤有机质及生物学特征的影响[J].土壤肥料,1998(3):7-11
    [66]张辉,李维炯,倪永珍.生物有机无机复合肥对土壤微生物活性的影响[J].农村生态环境,2004,20(1):37-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700