无卤无磷改性氢氧化镁阻燃EVA的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯-醋酸乙烯酯共聚物(EVA)是近年来发展较快的塑料产品之一,它具有良好的柔韧性、耐冲击性、耐环境应力,与填料、阻燃剂等有较好的混容性。但EVA比较易燃,同时产生带有毒性气体的黑烟,限制了其在家电、建筑、建材、电缆绝缘等方面的应用,因此EVA的阻燃性越来越引起人们的关注与重视。氢氧化镁可以说是当前公认具有填充、阻燃和抑烟三重功能的化学助剂,相比于其他阻燃剂,其在高分子材料应用中不仅能达到优良的阻燃效果,且有很好的抑烟效果,而且无毒、无腐蚀和低价等优点。它能与多种成分复配,而且具有抗酸性,能中和燃烧过程中产生的酸性和腐蚀性气体,是一种环境友好的绿色阻燃剂.但由于氢氧化镁阻燃剂相对于基物EVA添加量大,阻燃效率低,对其机械性能影响大,对其改性的研究仍是重中之重。本文在现有文献报道的基础上,分别用复配技术、偶联剂接枝技术及插层技术对氢氧化镁进行改性,添加了两种相容剂,它们分别是EVA-D4085和马来酸酐接枝EVA,研究了制备工艺和改性对EVA阻燃性能、力学性能、热力学性能、吸潮性能的影响。
     本文对氢氧化镁阻燃EVA研究较为具体,先以不同比例纯氢氧化镁(没经任何处理)与EVA密炼混合,研究表明,该阻燃复合体系垂直燃烧要达到V-0级,阻燃剂添加量需达到65%以上,此时的断裂伸长率仅在11.32%。加入10%相容剂马来酸酐接枝EVA时,断裂伸长率有所提高,可达31.5%;不同比例经硅烷偶联剂处理后的氢氧化镁,在与EVA密炼混合,研究表明,阻燃复合体系的断裂伸长率稍微有所改善;改性硼酸锌与改性氢氧化镁协同阻燃EVA,研究表明,当改性硼酸锌质量比为10%时,其协同改性氢氧化镁阻燃EVA的力学性能、阻燃性能、耐热性能都有所提高。
     本文还将偶联剂KH-550锚固在氢氧化镁上,然后再将异氰尿酸三缩水甘油酯(TGIC)接枝于其上,制备了异氰尿酸三缩水甘油酯(TGIC)接枝的氢氧化镁阻燃剂,研究了异氰尿酸三缩水甘油酯(TGIC)接枝的氢氧化镁的制备工艺,添加了不同比例的相容剂,并考察了接枝对EVA的阻燃性能、力学性能、热力学性能的影响。结果显示:异氰尿酸三缩水甘油酯(TGIC)接枝的氢氧化镁均能够较好的分散于EVA中,可以提高材料的垂直燃烧性能,在阻燃剂添加量为60%时,接枝氢氧化镁阻燃的EVA均能从未处理的V-1提升到V-0。力学性能大大的提高。
     根据氢氧化镁本身的特殊层状结构,本文还使用了硼酸-氧化锌改性技术,采用不同物质量比的硼酸与氧化锌反应,用激光粒度分析仪及高扫描显微镜(SEM)表征改性氢氧化镁的表面性质,制备了一种硼酸-氧化锌改性的氢氧化镁阻燃剂,研究了硼酸-氧化锌改性氢氧化镁阻燃剂的制备工艺,并考察了改性后对EVA的阻燃性能、力学性能、热力学性能的影响。结果显示:在阻燃剂添加量为63%时,硼酸-氧化锌改性的氢氧化镁阻燃剂阻燃的EVA能达到V-0级别,相容剂添加后,力学性能等均较好。
Ethylene-vinyl acetate copolymer (EVA) is one of the plastic products developed rapidly in recent years, It has good flexibility, impact resistance, resistance to environmental stress. It can be better mixed capacitive with fillers and flame retardants.However the Ethylene-vinyl acetate copolymer (EVA) is a more flammable matiral. Also produce toxic gas with smoke, limit its appliance, construction, building materials, cable insulation and other applications. Therefore, the flame-retardant EVA increasingly a cause for concern and attention.Magnsim hydroxide can be said to have recognized the current fill, flame retardant and smoke suppression of the triple function of chemical additives. Compared to other flame retardants, their applications in polymer materials can not only achieve excellent flame retardant effect, but also have a good smoke suppression effects, and non-toxic, non corrosive and low-cost advantages. It compounded with various ingredients, but also has anti-acid, can be generated in the combustion process and the acidic and corrosive gas, is an environmental friendly green flame. However, compared with magnesium hydroxide flame retardant EVA based material to add large, flame-retardant efficiency is high, but a great impact on their mechanical properties, the research of modified magnesium hydroxide is still the most important issure. The paper reports on the basis of existing literature. Complex technology, coupling technology and intercalated graft technique, three complex technology are used to modify Magnsim hydroxide. And add two compatibilizers, which are EVA-D4085 and maleic anhydride grafted EVA. of the preparation process and the modification on the EVA performance.the performance including flame-retardant properties, mechanical properties, thermal properties, moisture absorption properties.
     In this paper, the study of Magnesium hydroxide flame retardant EVA is more specific. Different ratio of purity magnesium hydroxide (not by any treatment) mixed with EVA mixing are used. The results show that The vertical combustion of flame retardant composite wants to achieve UL V-0, the amount of retardant required more than 65% are added, At this time the elongation rate is only 11.32%.And with 10% compatibilizer maleic anhydride grafted EVA. The elongation can increace up to 31.5%; Different proportions of magnesium hydroxide by the silane coupling agent treatment, then mixed in with EVA, The results show that the elongation at break of the Flame-retardant composite are slightly improved; Modified magnesium hydroxide and modified zinc borate flame retardant EVA Collaborative show that When the mass ratio of zinc borate modified by 10%, The modified magnesium hydroxide flame retardant EVA synergistic mechanical properties, flame retardancy, heat resistance are improved;The performance of APP with the modified magnesium hydroxide flame retardant EVA collaborative research show that When the flame retardant 60%, Compatibility agent was 10%, Vertical burn up to V-0 level, however, elongation rate of about 28%, serious impact on the mechanical properties of flame retardant composites.
     The silane coupler KH-550 was anchored on the MH surface and TGIC grafted MH flame retardant was prepared by polymerization. Preparation technology of grafted MH was investigated, Adding different proportions of compatibilizer,The modification effect of ethylene vinyl acetate(EVA) material on flame retardant properties and mechanical properties was studied. The results show that reaction conditions should be carefully selected in preparation of TGIC grafted MH. The material properties of the vertical combustion can be improved. TGIC grafted MH could be better dispersed in EVA and increase the flame retardant properties, In the flame retardant addition level of 60%, the UL 94 retardant degree was increased from V-1 to V-0. the mechanical properties was greatly improved.
     According to the special layered structure itself of Magnesium hydroxide, The paper also uses zinc borate modified technique.By different material of the reaction of boric acid and zinc oxide, With laser particle size analyzer and high scanning microscope (SEM) characterization of the surface properties of magnesium hydroxide, a zinc borate intercalation of magnesium hydroxide flame retardant was prepared.The preparation of Zinc borate intercalation of magnesium hydroxide was studied. ntercalated investigated the flame retardancy of the EVA, mechanical properties, thermal properties was studied too.The results show that: When the dosage of 63% in the flame retardant, zinc borate mofication of magnesium hydroxide flame retardant in the EVA can achieve UL V-0, adding compatibilizer, the mechanical properties was better.
引文
[1]刘立华.环保型无机阻燃剂的应用现状及发展前景[J].化工科技巿场,2005,(7):8-11.
    [2]虞鑫海,陈旭,张怀礼,赵炯心,李四新.非卤消烟阻燃乙烯醋酸乙烯酯及其制备方法[P].CN101 649084A,2010-02-17
    [3]张铁江.常见阻燃剂的利与弊[J].煤炭技术,2010,29(2):204-206
    [4]欧玉湘.实用阻燃技术[P].化学工业出版社,北京:2002,251
    [5]高峰,朱梦如.有机磷系阻燃剂的研究与应用[J].武警学院学报,2009,25(4):9-12
    [6]敖聪聪,林家强.有机磷阻燃剂的现状及发展前景[J].四川化工与腐蚀控制1999,2(5):30-33
    [7]冯美平,何冀云,郑文颖.氮系阻燃剂的现状与展望[J].精细石油化工,1999,1(1):24-28
    [8]张增光,贵大勇,刘吉平.硅系阻燃剂的研究进展[J].阻燃材料与技术,2007,5(5):10-14
    [9]Hsiue Ging- Ho,Wang Wu-Jlng, Chang Feng- Chih. Synthesis, characterization, thermal and fiame-retardantproperties of Silicon-based epoxy resins [J].J AppiPolym Sci,1999,73(7):1231-1238
    [10]赵雪,朱平,王炳含.硼阻燃剂的合成及性能研究[J].染整技术,2006,11(28),1-3
    [11]汪关才,卢忠远,胡小平,张建华.无机阻燃剂的作用机理及研究现状[J].材料导报,2007,2(21),219-210
    [12]佟芍朋等.硼系阻燃剂的发展及现状[J].2009年中国阻燃学术年会论文集2009
    [13]王德花等.塑料膨胀阻燃技术的研究进展[J].塑料工业,2008,69(3):9-13
    [14]刘彦明,郝冬梅,林悼仕等.无卤膨胀型阻燃聚丙烯的性能研究[J].塑料工业,2007,21(35):331-334
    [15]黄承亚等.氧化锌催化膨胀型阻燃剂对P P阻燃及力学性能的影响[J].塑料工业,2007,34(12):57-59
    [16]童乙青等.热分析在聚合物阻燃研究中的应用[J].塑料科技,1993,1(1):1-7
    [17]尹国强,廖列文,康正.塑料阻燃剂的合成研究进展[J].应用化工2003,32(4):12-15
    [18]冯美平,何翼云,文颖.氮系阻燃剂的现状与展望[J].精细石油化工,1998,2(1):24-28
    [19]鹿海军,马晓燕,颜红伙.磷系阻燃剂研究新进展[J].化工新型材料,2001,29(12):7-10
    [20]Colour B M. The chemistry and Use of FireRetardants[J].FireRetardant Chemistry.1978,25(19):23-28
    [21]邓兰,诸林,周文勇.阻燃剂的应用及发展[J].西南石油学院学报,1996,18(2):105-110
    [22]陈兴娟,王金阳,刘佳等.无机阻燃剂的表面处理技术[J].化学工程师.2001,4(7):22-23
    [23]王宏伟,王琳.氢氧化镁阻燃剂的开发与应用[J].河南教育学院学报(自然科学版),2001,10(4):34-36
    [24]陈绪煌,周密,李学锋.氢氧化铝阻燃剂在高分子材料中的应用[J].中国塑料,1999,13(6):80-84
    [25]史翎,端雪.阻燃剂的发展及在塑料中的应用[J].塑料,2001,31(3):11-15
    [26]Mauerer O.New Reactive,Halogen-free Flame Retardant System for Epoxy Resins[J].Polymer Degradation and Stability,2005,88:70-73
    [27]胡晖,张有勇,申景强,等.低烟无卤无磷阻燃热收缩材料的研制[J].化工新型材料,2006,34(6):78-82
    [28]刘金刚,王德生,范琳,等.环境友好型无卤无锑无磷阻燃环氧树脂的进展(Ⅰ)[J].热固性树脂,2004,19(4):23-28
    [29]Crossa M.S.,Cusacka P.A.,Hornsby P.R.,Effects of Tim Additives on the Flammability and Smoke Emission Characteristics of Halogen-free Ethylene-vinyl Acetate Copolymer[J]. Polym. Degrad Stab.,2003,79:309-318
    [30]Carpentier F., Bourbigota S., Brasa M.L.,et al. Charring of Fire Retarded Ethylene Vinyl Acetate Copolymer-Magnesium Hydroxide/Zinc Borate Formulations [J]. Polym. Degrad Stab,2000,69:83-92
    [31]Serge b.,Michel B.L.,Robert L.et al. Recent Advances in the Use of Zinc Borates inFlameRetardancyofEVA[J].PolymerDegradationandStability,1999,64(3):419-4 25
    [32]于勇忠,吴启鸿.阻燃材料手册[M].北京,群众出版社,1990
    [33]俞祥兴.氢氧化镁阻燃剂的开发和应用[J].电线电缆,1998,8(1):27~30
    [34]吴勇.氢氧化镁阻燃剂及其表面改性[J].消防技术与产品信息,1999,8(6):22-24
    [35]李益成.超细氢氧化镁的制各及应用[J].中国氯碱,2003.13(3):20-21
    [36]郭如新.日本氧化镁、氢氧化镁生产应用与研发动向[J].海湖盐与化工,2003.11(2):9-13
    [37]Weber M. Mineral flame retardants overview and future trends[J]. Industrial Mineral,2002,2(8):19-28
    [38]余仁.阻燃剂氢氧化镁的制备及其应用[J].化工矿物加工,2000,12(3):26-27
    [39]杨鸿.氢氧化镁阻燃剂的开发与应用[J].无机盐工业,2001,33(3):23-26
    [40]Tuzhikov O I, Lyabin M P. Kinetics of reaction between magnesium hydroxide and dimethyl phosphate[J]. Applied Chemistry,2003,77(8):1211-1213
    [41]郭如新.氢氧化镁应用近期进展[J].海湖盐与化工,1998,27(5):39-44
    [42]Misev T A, Linde R V. Powder coatings technology:new developments at the turn of century[J]. Progress in Organic Coatings.1998,34(2):160-168
    [43]伟,陈建峰,卢寿慈.超细粉体表面修饰[M].化学工业出版社,2004
    [44]Misev T A, Linde R V. Powder coatings technology: new developments at the turn of century[J]. Progress in Organic Coatings.1998,34(2):160-168
    [45]伟,陈建峰,卢寿慈.超细粉体表面修饰[M].化学工业出版社,2004
    [46]卢寿慈.粉体加工技术[M].中国轻工业出版社,1999
    [47]Goldewski R E, Osterholtz F D. Novel reinforcing additive and method of reinforcing thermoplastic polymer therewith [P]. US Patent 4481322,1984
    [48]Ancker F H, Ashcraft A C, Leung M S. reinforcement promoters for filled thermoplastic Polymers [P]. US Patent 4385136,1983
    [49]欧玉春,方晓萍,杨桂生.无卤阻燃聚乙烯复合体系的研究[J].机车电传动,2003, supplement:57-60.
    [50]安晶.氢氧化镁填充量对聚丙烯阻燃性能的研究[J].盐城工学院学报(自然学版),2008,21(1):66-68
    [51]杜高翔,郑水林,李杨.超细氢氧化镁粉的表面改性及其高填充聚丙烯的性能研究[J].中国塑料,2004,18(7):75-79
    [52]叶虹,赵伟,樊唯榴,由婷,孙思修.结晶Mg(OH)2的表面改性及其对EVA性能的影响[J].山东大学学报(理学版),2007,42(3):52-59
    [53]罗十平.氢氧化镁表面改性及其在EVA中的应用[J].江苏石油化工学院学报.,1998,10(4):4-7
    [54]洪宗国.微型胶囊在胶粘剂中的应用[J].中国胶粘剂,2000,10(3):38-41
    [55]张琦,胡伟康,田明.纳米氢氧化镁/橡胶复合材料的性能研究[J].橡胶工业,2004,51(1):14-19
    [56]董均.无机氢氧化物阻燃剂的应用与发展趋势[J].中国西部科技,2004,6(9):16-18
    [57]范维澄,瞿保钧,沈效峰,邵宗龙,王正洲.微胶囊化红磷增效氢氧化镁阻燃聚乙烯的燃烧特性[J].火灾科学,2001,10(2):72-75
    [58]鲍志素.氢氧化镁用磷腈化合物增效阻燃聚丙烯[J].广东塑料.2006,3:48-49.
    [59]虞鑫海,陈旭,徐永芬,霍蛟龙,李四新.新型阻燃型乙烯-醋酸乙烯酯共聚物的研制[J].绝缘材料,2010,43(2)
    [60]陈旭,虞鑫海,钟毅,张怀礼,李金玉,李四新.氢氧化镁微胶囊的制备与应用[J].绝缘材料,2009,42(5):14-16