两种碳基材料的合理功能化及相关电化学器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳材料具有许多优点,如良好的导电性,高纯度,能够以不同的结构存在,容易制得且一般较廉价。在水溶液中,碳电极的电位窗较宽,约为-1.0~1.0V(vs.SCE);在大多数电解质溶液中碳材料具有相对化学惰性并且保持较高的电极反应性能。这些独特的性质使得碳材料作为电极材料在电化学和电分析化学研究领域具有广泛的应用。
     本文以碳纳米管和合成的碳微球为电极材料,对其进行功能化修饰,并基于此构建了相关电化学器件:化学/生物传感器和生物燃料电池。具体概括如下:
     1.碳纳米管/酚藏花红(PS-MWNTs)纳米复合物的制备及其化学/生物传感应用。以吩嗪类染料酚藏花红(phenosafranine,PS)为电催化剂,以纳米管为基质,通过吸附及π-π电子相互堆积作用,制备了碳纳米管/酚藏花红纳米复合物。基于该纳米复合物对过氧化氢电还原的催化性能,构建了过氧化氢传感,在最优化的实验条件下,该传感器的线性范围为0 - 7 mM,检测限为0.23μM。基于PS-MWNTs纳米复合物对氧气电还原的催化性能以及葡萄糖氧化酶(GOx)对底物葡萄糖的特异性生物催化功能,制备了GOx-PS-MWNTs生物纳米复合物,通过检测反应过程中被消耗的氧气量,实现了对葡萄糖的生物传感,在最优化的实验条件下,该传感器的线性范围为0 - 8 mM,检测限为0.35μM。
     2.合成了一种微米结构的中空碳球(CDS)。首先,研究了碳微球对NADH的催化性能,并构建了基于乳酸脱氢酶(LDH)的乳酸生物传感器;同时研究了胆红素氧化酶在碳微球修饰电极表面的直接电化学行为。基于此研制出了以LDH-CDS/GC电极作为生物阳极,以BOD-CDS/GC电极为生物阴极的无隔膜型乳酸/氧气生物燃料电池,电池的开路电位为0.45 V,最大输出功率为0.52μW/cm~2。其次,为改进催化氧化NADH的性能,在碳微球修饰电极表面电聚合亚甲基蓝(PMB),所得的PMB-CDS-GC纳米复合物对NADH具有优良的电催化性能。基于此研制出乳酸生物传感器,并且构建了以LDH-PMB-CDS/GC为生物阳极,以BOD-CDS/GC为生物阴极的无隔膜型乳酸/氧气生物燃料电池。该电池的开路电位为0.6 V最大输出功率为3.13μW/cm~2。
Carbon Materials possess many distinguished characteristics including good electrical conductivity, high purity, diversified structures, cheap, and more readily available. Carbon materials have a wide potential window (-1.0~1.0V vs.SCE) in aqueous solution. In addition, carbon materials are relatively chemically inert and can keep fairly high surface activity. These distinct characteristics essentially endow carbon materials with extensive applications in electrochemistry and electroanalytical chemistry.
     In this paper, two kinds of carbon materials, carbon nanotube and carbon hollow sphere, are used as electrode materials and functionalized rationally. Based on this, relative electrochemical devices such as chemo/biosensing and biofuel cell are constructed. The details are summarized as follows:
     1. Preparation of carbon nanotube/phenosafranine nanocomposites (PS-MWNTs) and its chemo/biosensing applications. The PS-MWNTs nanocomposites, in which phenosafranine (PS) used as electrocatalyst and MWNTs as electrode substrate, are prepared via adsorption andπ-πelectronic stack. A hydrogen peroxide (H2O2) sensor is constructed based on electrocatalytic activity of PS-MWNTs nanocomposite to H2O2. Under the optimum experimental conditions, the linear range of the sensor is 0-7 mM with a detection limit of 0.23μM. The GOx-PS-MWNTs bionanocomposites, in which GOx (glucose oxidase) is used as biocatalyst to glucose oxidation and PS-MWNTs as electrocatalyst to oxygen reduction, are also prepared, and as thus a glucose sensor is constructed based on the amount of oxygen comsumed in the glucose oxidation reaction catalysed by GOx. Under optimum experimental conditions, the linear range for glucose sensing is 0-8 mM, with a detection limit of 0.35μM.
     2. A micro-structured carbon hollow spheres (CPS) are synthesized. Firstly, the catalytic activity of CPS to NADH oxidation is studied and also a lactate biosensor based on lactate dehydrogenase (LDH) is constructed. The direct electrochemistry of bilirubin oxidase (BOD) on CDS/GC electrode is investigated. And as thus a membrane-less enzymatic lactate/O2 biofuel cell is constructed using LDH-CDS/GC electrode as bioanode and BOD-CDS/GC as biocathode. The biofuel cell is found to have open potential of 0.45 V and a maximum power output of 0.52μW/cm~2. Secondly, in order to improve the catalytic activity to NADH oxidation, a electrocatalyst to NADH oxidation, poly(methyl Blue) is further immobilized on CDS/GC electrode via electropolymerization. And as thus another lactate biosensor based on lactate dehydrogenase is constructed and also a membrane-less enzymatic lactate/O2 biofuel cell using LDH-polyMB-CDS/GC as bioande and BOD-CDS/GC as biocathode is also construted. The biofuel cell is found to have open potential of 0.6 V and a maximum power output of 3.13μW/cm~2.
引文
[1]王茂章,新型碳材料,1995, 10,4:1
    [2]奥达熊,碳素,1991, 150:1
    [3]王曼震,宇航材料工艺,1988,4:1
    [4]Ca. nizares P, Lobato J, Paz R , et al. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes Wat.Res, 2005, 39:2687
    [5]Jara C C, Fino D, Spechia V, et al. Electrochemial removal of Antibiotics from waste waters, Appl. Catal, B-Environ, 2007, 70:479
    [6]Gunilla Zetterber, Lo Gorton, Influnce of graphite powder, additives and enzyme immobilization procedures on a mediatorless HRP-modified carbon paste electrode for amperometric flow-injection detection of H2O2, Biosensor. Bioelectronics. 1995, 10: 443
    [7] Koichi Ui, Shinei Kikuchi, Fuminobu Mikami, Yoshihiro Kadoma, Naoaki Kumagai, Improvement of electrochemical characteristics of natural graphite negative electrode coated with polyacrylic acid in pure propylene carbonate electrolyte, Journal of Power Sources 2007, 173: 518
    [8] Pablo Ramírez, Nicolas Mano, Rafael Andreu, Tautgirdas Ruzgas, Adam Heller, Lo Gorton , Sergey Shleev, Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase, Biochimica et Biophysica Acta. 2008, 1777: 1364
    [9] Annika Lindgren, Lo Gorton, Tautgirdas Ruzgas, Ursula Baminger, Dietmar Haltrich, Martin Schu¨lein, Direct electron transfer of cellobiose dehydrogenase from various biological origins at gold and graphite electrodes, Journal of ElectroanalyticalChemistry 496, 2001: 76
    [10]V.Suryanarayanan, Y.Zhang, S. Yoshihara, T. Shirakashi Amperometric determination of sodium thiosulphate using boron-doped diamond electrodes applied to flow injection analysis, Sensors and Actuators B, 2004, 102:169
    [11]Tribidasari A. Ivandini, Rika Sato, Yoshihiro Makide, Akira Fujishima, Yasuaki Einaga, Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide, Diamond & Related Materials 2005, 14: 2133
    [12]Tribidasari A. Ivandini, Rika Sato, Yoshihiro Makide, Akira Fujishima, Yasuaki Einaga, Electroanalytical application of modified diamond electrodes, Diamond & Related Materials 2004, 13: 2003
    [13] A. Perret, W. Haenni, N. Skinner, X.-M. Tang , D. Gandini , C. Comninellis ,B. Correa, G. Foti, Electrochemical behavior of synthetic diamond thin film electrodes , Diamond and Related Materials, 1999, 8: 820
    [14]Kroto H W, Heath J R, O’Brien S C et al. C60: Buckm insterfullerene. , Nature, 1985, 318: 162
    [15] Y. Sasaki, T. Konishi , M.Fujitsuka, O.Ito,Y. Maeda, T. Wakahara c, T. Akasaka , M. Kako ,Y. Nakadaira,Photoinduced electron-transfer reaction between C60 and cyclic silicon compounds, Journal of Organometallic Chemistry, 2000, 599: 216
    [16]戴剑锋,王青,李维学,魏智强,何彦,水溶性富勒烯衍生物的合成,兰州理工大学学报,2004, 30:70 M. Maggini, A. Karlsson, G. Scorrano, G. Sandona`, G. Farnia, M. Prato, , J. Chem. Soc., Chem. Commun. 1994:589
    [17] Fernando Patolsky, Guoliang Tao, Eugenii Katz, Itamar Willner, C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase, Journal of Electroanalytical Chemistry, 1998, 454: 9
    [18] W.T. Tan, A.M. Bond, S.W. Ngooi, E.B. Lim, J.K. Goh, Electrochemical oxidation of l-cysteine mediated by a fullerene-C60-modified carbon electrode, Analytica Chimica Acta 2003, 491:181
    [19] Marcela Rend′on , Michael E. Hyde, Marco F. Su′arez ,Alvaro Duarte-Ruiz , Richard G. Compton, AFM and electrochemical studies of mono- and bis-anthracene derivatives of C60 deposited on gold electrodes, Synthetic Metals, 2005, 149:99
    [20] Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354:56
    [21] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. , Nature,1993, 363:603
    [22]Bethune, D.S; Klang,C.H; DeVries, M.S.Gorman, G,; Savoy, R.; Vazquez,J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. , Nature, 1993, 363:605
    [23]周华王辉宪刘登友罗启枚,碳纳米管修饰酶生物传感器的应用进展,传感器世界,2008, 4:6
    [24]李永常,碳纳米管研究近况,天津化工, 2005, 19:6
    [25]曾金芳,乔生儒,丘哲明,等.纤维表面处理对碳纤维复合材料剪切性能影响,固体火箭技术, 2002, 25, 4 : 46
    [26]吴星五,赵国华,高廷耀.电化学法水处理新技术———降解有机废水,环境科学学报, 2000, 20,增刊: 80
    [27] Y.N. Xia, G.M. Whitesides, "Soft lithography", Angew. Chem. Int. Ed., 1998, 37:550
    [28] X.-M. Zhao, X. Younan, G.M. Whitesides, Soft lithographic meth- ods for nanofabrication, J. Mater. Chem. 1997, 7: 1069
    [29]A. Kumar, H.A. Biebuyck, G.M. Whitesides, Patterning self-assembled monolayers: applications in material science, Langmuir, 1994, 10:1498
    [30]Y. Xia, M. Mrksich, E. Kim, G.M. Whitesides, Microcontact printing of octadecylsiloxane on the surface of silicon dioxide, and its application in microfabrication, J. Am. Chem. Soc. 1995, 117: 9576
    [31]Y. Xia, E. Kim, M. Mrksich, G.M. Whitesides, Microcontact printing of alkanethiols on copper and its application in microfabrication, Chem. Mater. 1996, 8: 601
    [32]Y. Xia, G.M. Whitesides, Extending microcontact printing as a microlithographic technique, Langmuir 1997, 13:2059
    [33]E. Kim, Y. Xia, G.M. Whitesides, Micromolding in capillaries: applications in materials science, J. Am. Chem. Soc. 1996, 118: 5722
    [34]E. Kim, Y. Xia, G.M. Whitesides, Polymer microstructures formed by moulding in capillaries, Nature, 1995, 376 : 581
    [35]Y. Xia, J.J. McClelland, R. Gupta, D. Qin, X.-M. Zhao, L.L. Sohn, R.J. Celotta, G.M. Whitesides, Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 1997, 9: 147
    [36]Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, G.M. Whitesides, Complex optical surfaces by replica molding against elastomeric masters, Science1996, 273: 344
    [37]Musameh M,Wang J ,Merkoci A ,et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 2002, 4:743
    [38]Dilek Odaci, Azmi Telefoncu, Suna Timur [J]. Pyranose oxidase biosensor based on carbon nanotube, CNT-modified carbon paste electrodes, Sensors and Actuators B 2008, 132:159
    [39]Suna Timur, Ulku Anik, Dilek Odaci, Lo Gorton, [J].Development of a microbial biosensor based on carbon nanotube, CNT modified electrodes , Electrochemistry Communications 2007, 9:1810
    [40]Bong Gill Choi, HoSeok Park, Tae Jung Park, Dong Hyun Kim, Sang Yup Lee, Won Hi Hong, Development of the electrochemical biosensor for organophosphate chemicals using CNT/ionic liquid bucky gel electrode, Electrochemistry Communications 2009, 11: 672
    [41]Xing-Jiu Huang, Yue Li, Yang-Kyu Choi, A chestnut-like hierarchical architecture of a SWCNT/microsphere composite on an electrode for electroanalysis, Journal of Electroanalytical Chemistry 2008, 617: 218
    [42]Chunyan Deng, Jinhua Chen, XiaoLi Chen, Chunhui Xiao, Zhou Nie, Shouzhuo Yao, Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH, Electrochemistry Communications 2008, 10: 907
    [43]Swati Mohan, Rajiv Prakash, Functionalization of conducting polymer with novel Co, II complex: Electroanalysis of ascorbic acid, Materials Science and Engineering: C Available online, 2010, 12
    [44]PaulinaArias, Nancy F. Ferreyra, Gustavo A. Rivas, Soledad Bollo, Glassy carbon electrodes modified with CNT dispersed in chitosan: Analytical applications for sensing DNA–methylene blue interaction [J].Journal of Electroanalytical Chemistry 2009, 634: 123
    [45]Renyun Zhang, Xuemei Wang, Kwok-Keung Shiu, Accelerated direct electrochemistry of hemoglobin based on hemoglobin–carbon nanotube ,Hb–CNT assembly, Journal of Colloid and Interface Science, 2007, 316: 517
    [46]Na Zhou, Tao Yang, Chen Jiang, Meng Du, Kui Jiao, Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Aunano–CNT/PANnano films, Talanta 2009, 77:1021
    [47]Xiaoqiang Cui, Chang Ming Li, Jianfeng Zang, Shucong Yu, Highly sensitivelactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite, Biosensors and Bioelectronics 2007, 22: 3288
    [48]Liu Deng, Ming Zhou, Chang Liu, Ling Liu, Changyun Liu, Shaojun Dong, Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells, Talanta 2010, 81:444
    [49]Jingwei Zhu, Yu Qin, Yunhong Zhang, Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites, Electrochemistry Communications 2009, 11:1684
    [50] Rosa Olivé-Monllau, Ana Pereira, Jordi Bartrolí, Mireia Baeza, Francisco Céspedes, Highly sensitive CNT composite amperometric sensors integrated in an automated flow system for the determination of free chlorine in waters, Talanta, Available online, 2010, 17
    [51] Suiping Wang, Limin Lu, Minghui Yang, Yong Lei, Guoli Shen, Ruqin Yu, A novel cobalt hexacyanoferrate nanocomposite on CNT scaffold by seed medium and application for biosensor, Analytica Chimica Acta. 2009, 651:220
    [52] P. Manisankar, PL. Abirama Sundari, R. Sasikumar, SP. Palaniappan, Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode, Talanta, 2008, 76: 1022
    [53] Bin Ge, Yueming Tan, Qingji Xie, Ming Ma, Shouzhuo Yao, Preparation of chitosan–dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH, Sensors and Actuators B: Chemical 2009, 137:547
    [54] Randhir P. Deo, Joseph Wang, Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes, Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes, Electrochemistry Communications 2004, 6: 284
    [55] Eva Baldrich, Rodrigo Gómez, Gemma Gabriel, Francesc Xavier Mu?oz, Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: Application to dopamine detection, Biosensors and Bioelectronics Available online, 2010, 20
    [56] Alberto Sánchez Arribas, Esperanza Bermejo, Manuel Chicharro, Antonio Zapardiel, Guillermina L. Luque, Nancy F. Ferreyra, Gustavo A. Rivas, Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems, Analytica Chimica Acta.2007, 596: 183
    [57] Xinhuang Kang, Zhibin Mai, Xiaoyong Zou, Peixiang Cai, Jinyuan Mo, Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid, Talanta 2008, 74:879
    [58] Mark R. Contarino, Mauro Sergi, Adrian E. Harrington, Adam Lazareck, Jimmy Xu, Irwin Chaiken ,Modular, self-assembling peptide linkers for stable and regenerable carbon nanotube biosensor interfaces, Journal of Molecular Recognition 2006, 19: 363
    [59] Xueyan Zhao, Hongfei Jia, Jungbae Kim, Ping Wang ,Kinetic limitations of a bioelectrochemical electrode using carbon nanotube-attached glucose oxidase for biofuel cells, Biotechnology and Bioengineering 2009, 104: 1068
    [60] Han Nim Choi, Young-Ku Lyu, Jee Hoon Han, Won-Yong Lee, Amperometric Ethanol Biosensor Based on Carbon Nanotubes Dispersed in Sol-Gel-Derived Titania-Nafion Composite Film, Electroanalysis 2007, 19: 1524
    [61] Han Nim Choi, Sook Hyun Yoon, Young-Ku Lyu, Won-Yong Lee, Electrogenerated Chemiluminescence Ethanol Biosensor Based on Carbon Nanotube-Titania-Nafion Composite Film, Electroanalysis 2007, 19: 459
    [62] Shi Qiaocui, Peng Tuzhi, Zhu Yunu, Catherine F. Yang An Electrochemical Biosensor with Cholesterol Oxidase/ Sol-Gel Film on a Nanoplatinum/Carbon Nanotube Electrode, Electroanalysis 2005, 17: 857
    [62] Dong Cai, Ying Yu, Yucheng Lan, Fay J. Dufort, Guangyong Xiong, Trilochan Paudel, Zhifeng Ren, Dean J. Wagner, Thomas C. Chiles,Glucose sensors made of novel carbon nanotube-gold nanoparticle composites [J]. BioFactors 2007, 30: 271
    [63] Yan-Li Yao, Kwok-Keung Shiu, A Mediator-Free Bienzyme Amperometric Biosensor Based on Horseradish Peroxidase and Glucose Oxidase Immobilized on Carbon Nanotube Modified Electrode, Electroanalysis 2008, 20: 2090
    [64] Jie Yan, Haojie Zhou, Ping Yu, Lei Su, Lanqun Mao, Rational Functionalization of Carbon Nanotubes Leading to Electrochemical Devices with Striking Applications, Advanced Materials 2008, 20: 2899
    [65] Jongeun Ryu, Hak-Sung Kim, H. Thomas Hahn, David Lashmore Carbon nanotubes with platinum nano-islands as glucose biofuel cell electrodes, Biosensors and Bioelectronics 2010, 25:1603
    [66] Dmitri Ivnitski, Brittany Branch, Plamen Atanassov, Christopher Apblett, Glucose oxidase anode for biofuel cell based on direct electron transfer,Electrochemistry Communications 2006, 8:1204
    [67] Jin Young Lee, Hyun Yong Shin, Seong Woo Kang, Chulhwan Park, Seung Wook Kim, Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell, Journal of Power Sources 2010, 195: 750
    [68] H.Y. Zhao, H.M. Zhou, J.X. Zhang, W. Zheng, Y.F. Zheng Carbon nanotube–hydroxyapatite nanocomposite: A novel platform for glucose/O2 biofuel cell, Biosensors and Bioelectronics 2009, 25: 463
    [69] W. Zheng, H.M. Zhou, Y.F. Zheng, N. Wang A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell, Chemical Physics Letters 2008, 457: 381
    [70] Steven W. Buckner, Paul A. Jelliss, Anita Nukic, Erin R. Zalocusky, Joshua Schumacher, A metallacarborane redox mediator for an enzyme-immobilized chitosan-modified bioanode, Bioelectrochemistry 2010, 78: 130
    [71] Meining Zhang, Lei Su, Lanqun Mao ,Surfactant functionalization of carbon nanotubes ,CNTs for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid, Carbon 2006, 44:276
    [72] DAVIS J J, GREEN ML H, HILL H A O, et al. The immobilisation of proteins in carbon nanotubes, Inorg. Chim. Acta. 1998, 272: 261
    [73]D.R. Shobha Jeykumari, S. Sriman Narayanan, A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes, Biosensors and Bioelectronics 2008, 23: 1404
    [74] Rubians MD, RIVAS GA. Carbon nanotubes paste electrodes, Electrochem. Commun. 2003, 8: 689
    [75] Yu-Chen Tsai, Siao-Yun Chen, Hong-Wei Liaw, Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sensors and Actuators B 2007, 125:474
    [76]Minghui Yang, Yunhui Yang, Yanli Liu, Guoli Shen , Ruqin Yu, Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors[, Biosensors and Bioelectronics 2006, 21: 1125
    [77] Pan Du, Ping Wu, Chenxin Cai,A glucose biosensor based on electrocatalytic oxidation of NADPH at single-walled carbon nanotubes functionalized with poly(nile blue A), Journal of Electroanalytical Chemistry 2008, 624:21
    [78] Ming Zhou, Li Shang, Bingling Li, Lijian Huang, Shaojun Dong, The characteristics of highly ordered mesoporous carbons as electrode material forelectrochemical sensing as compared with carbon nanotubes, Electrochemistry Communications 2008, 10: 859
    [79] Vasilis G. Gavalas, Nikolas A. Chaniotakis, [60] Fullerene-mediated amperometric biosensors [J].Analytica Chimica Acta, 2000, 409:131
    [80] S. C. Barton, J. Gallaway, P. Atanassov, Chem. Rev. 2004, 104: 4867
    [81] T. Ikeda, K. Kano, Biochim. Biophys. Acta 2003, 121:1647
    [82] R. A. Bullen, T. C. Arnot, J. B. Lakeman, F. C. Walsh, Biosens. Bioelectron. 2006, 21: 2015.
    [83] J. Kim, H. Jia, P. Wang, Biotechnol. Adv. 2006, 24:296
    [84]Yiming Yan, Wei Zheng, Lei Su, and Lanqun Mao, Carbon-Nanotube-Based Glucose/O2 Biofuel Cells, Adv. Mater. 2006, 18: 2639
    [85] Feng Gao, Yiming Yan, Lei Su, Lun Wang, Lanqun Mao, An enzymatic glucose/O2 biofuel cell: Preparation, characterization and performance in serum, Electrochemistry Communications 2007, 9: 989
    [86] Xianchan Li, Haojie Zhou, Ping Yu, Lei Su , Takeo Ohsaka , Lanqun Mao, A Miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate, Electrochemistry Communications 2008, 10:851
    [87]Lina Wu, Xueji Zhang, Huangxian Ju, Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential, Anal. Chem. 2007, 79: 453
    [88] Takashi Kuwahara, Hokuto Ohta, Mizuki Kondo, Masato Shimomura ,Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell, Bioelectrochemistry 2008, 74: 66–72
    [89] Yueming Tan,Wenfang Deng, Bin Ge, Qingji Xie, Jinhua Huang, Shouzhuo Yao, Biofuel cell and phenolic biosensor based on acid- resistant laccase–glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film, Biosensors and Bioelectronics 2009, 24:2225
    [90] L.Deng, Li Shang, Yizhe Wang, Tie Wang, Hongjun Chen, Shaojun Dong, Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell, Electrochemistry Communications 2008, 10: 1012
    [91] Ying Liu, Shaojun Dong, A biofuel cell with enhanced power output by grape juice, Electrochemistry Communications 2007, 9:1423
    [1]A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles, Anal. Chim. Acta. 2007, 594:24
    [2]Y. Usui, K. Sato, M. Tanaka, Catalytic Dihydroxylation of Olefins with Hydrogen Peroxide: An Organic-Solvent- and Metal-Free System, Angew. Chem. Int. Ed. 2003, 42: 5623
    [3]L. Campanella, R. Roversi, M.P. Sammartino, M. Tomassetti, Determination of hydrogen peroxide in disinfectant solutions using a biosensor with two antagonist enzymes, J. Pharm. Biomed. Anal. 1998, 18:105
    [4] M.S.M. Quintino, H. Winnischofer, K. Araki, H.E. Toma, L. Angnes, Cobalt oxide/tetraruthenated cobalt-prophyrin composite for hydrogen peroxide amperometric sensors, Analyst 2005, 130: 221.
    [5] S. Cosnier, S. Szunerits, R.S. Marks, A. Novoa, L. Puech, E. Perez, I. Rico-Lattes, A rapid and easy procedure of biosensor fabrication by microencapsulation of enzyme in hydrophilic synthetic latex films.Application to the amperometric determination of glucose, Electrochem. Commun. 2000, 2: 851
    [6] Toniolo R , Geatt P , Bontempelli G,et al1 Amperomet ric monitoring of hydrogen peroxide in workplace atmospheres by elect rodes supported on ion-ex-changemembranes, J. Elect roanal. Chem. 2001, 514: 123
    [7]Campanella L I , Rovers R , Sammartino M P , et al. Hydrogen peroxide determination in pharmaceuticalfor mulations and cosmetics using a new catalase biosensor, Journal of Pharmaceutical and Biomedical Analysis, 1998, 18:105
    [8] Lin J M , Arakawa H , Yamada M. Flow injection chemiluminescent determination of trace amounts of hydrogen peroxide in snow-water using KIO4-K2CO3 system, Anal. Chim1 Acta, 1998, 37: 171
    [9] Wu Z S, Zhang S B, Guo M M, et al. Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide, Anal. Chim. Acta. 2007, 584:122
    [10]Kobayashi K, Kawai S. Enzymatic determination of hydrogen peroxide using gas chromatography, J.Chromatograph. A. 1982, 245: 339
    [11]梁爱惠,蒋治良,陶慧林.一个灵敏测定过氧化氢的吖啶红共振散射光谱新方法,光谱学与光谱分析2007, 27:120
    [12]江波,张骏,胡庆红,蒋治良.孔雀石绿的催化共振散射法测定痕量过氧化氢,广西师范大学学报,2009, 27 :67
    [13]陈志兵,王鹏,李艳,王鑫,朱昌青,功能性碲化镉纳米荧光探针荧光猝灭法测定过氧化氢,理化试验-化学分册,2009, 4:45
    [14]刘海峰,柴春彦,刘国艳,壳聚糖-胶体丝网印刷电极测定过氧化氢,上海交通大学学报2008, 26:264
    [15]D.R. Shobha Jeykumari, S. Sriman Naryanan, A nove nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes, Biosens. Bioelectron. 2008, 23: 1404
    [16]Abdollah Salimi, Abdollah Noorbakhsh, Hussein Mamkhezri, Raoof Ghavami Electrocatalytic Reduction of H2O2 and Oxygen on the Surface of Thionin Incorporated onto MWCNTs Modified Glassy Carbon Electrode: Application to Glucose Detection, Electroanalysis 2007, 19: 1100
    [17]Pan Du, Bo Zhou, Chenxin Cai, Development of an amperometric biosensor for glucose based on electrocatalytic reduction of hydrogen peroxide at the single-walled carbon nanotube/nile blue A nanocomposite modified electrode, Journal of Electroanalytical Chemistry 2008, 614 : 149
    [18]Bingquan Wang, Shaojun Dong, Sol–gel-derived amperometric biosensor forhydrogen peroxide based on methylene green incorporated in Nafion film, Talanta 2000, 51: 565
    [19]Yan-Li Yao, Kwok-Keung Shiu Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film, Electrochimica Acta, 2007, 53 : 278
    [20]Koichiro Tanaka, Koichi Tokuda and Takeo Ohsaka, An Excellent Electrocatalysis of Poly(phenosafranine) modified Electrode for Oxidation of Reducedβ-Nicotinamide Adenine Dinucleotide, J. Chem. Soc., Chem. Commun. 1993, 115: 1770
    [21]T. Selvaraju, R. Ramaraj Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode, Electrochemistry Communications 2003, 5: 667
    [22]A.A.Ensafi, A. Kazemzadeh, Monitoring nitrite with optical sensing films, Microchem. J. 2002, 72: 193
    [23]S. Easwaramoorthi, P. Natarajan, Redox properties of phenosafranine at zeolite-modified electrodes-Effect of surface modification and solution pH, Mater. Chem. Phys. 2008, 107:101
    [24]A. Noorbakhsh, A. Salimi, E. Sharifi, Fabrication of Glucose Biosensor Based on Encapsulation of Glucose-Oxidase on Sol-Gel Composite at the Surface of Glassy Carbon Electrode Modified with Carbon Nanotubes and Celestine Blue, Electroanalysis 2008, 20:1788
    [25]D.R.S. Jeykumari, S. Ramaprabhu, S.S.Narayanan, A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide, Carbon, 2007, 45 : 1340
    [26] Z. Li, J. Chen, W. Li, K. Chen, L. Nie, S. Yao, Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes, J. Electroana. Chem. 2008, 603: 59
    [27] Yongjin Zou, Li-Xian Sun, Fen Xua, A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes, Biosensors and Bioelectronics 2007, 22:2669
    [28]Y. Xian, Y. Hu, F. Liu, Y. Xian, H. Wang, L. Jin, Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite Biosens. Bioelectron 2006, 21: 1996
    [29]J. Li, X. Lin, Glucose biosensor based on immobilization of glucose oxidase inpoly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode, Biosens. Bioelectron.2007, 22: 2898
    [30]H. Yang, X. Zhu, Glucose biosensor based on nano-SiO2 and“unprotected”Pt nanoclusters, Biosens. Bioelectron.2007, 22: 2989
    [31]高盐生,董江庆,李兰扣,基于葡萄糖氧化酶的葡萄糖生物传感器,浙江大学学报2008, 9:27-28
    [32]Updike S J, Hicks G P., The enzyme electrode, Nature 1967, 214: 986
    [33]Jia Jianbo, WangBingquan, Wu aiguo, et al. A method to construct a third generation horse radishperoxidase biosensor: Self-assembing gold nanoparticles to three-dimensional sol gel network, Anal Chem, 2002, 74, 9: 2217
    [34]L. Zhu, Y. Li, F. Tian, B. Xu, G. Zhu, Electrochemiluminescent determination of glucose with a sol–gel derived ceramic–carbon composite electrode as a renewable optical fiber biosensor, Sens. Actuators B, 2002, 84 : 265
    [35]J. Rubio Retama, E. López Cabarcos, D. Mecerreyes, B. López-Ruiz, Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase, Biosensors and Bioelectronics, 2004, 20: 1111
    [36] Anantha I. Gopalan, Kwang P. Lee, Dhanusuraman Ragupathy, Se H. Lee, Jong W. Lee, An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer–silica nanocomposite, Biomaterials 2009, 30 : 5999
    [37]J. Wang, M. Musameh, Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors, Anal. Chem. 2003, 75: 2075
    [38]P.D. Hale, L.I. Boguslavsky, H.I. Karan, H.L. Lan, H.S. Lee, Y. Okamoto,T.A. Skotheim, Amperometric glucose sensors based on ferrocene-modified poly(ethylene oxide) and glucose oxid, .Anal. Chim. Acta, 1991, 251: 121
    [39]M. Zhang, W. Gorshi, Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System, J. Am. Chem. Soc. 2005, 127: 2058
    [40]D. Zhang, K. Zhang, Y.L. Yao, X.H. Xia, H.Y. Chen, Multilayer Assembly of Prussian Blue Nanoclusters and Enzyme-Immobilized Poly(toluidine blue) Films and Its Application in Glucose Biosensor Construction, Langmuir 2004, 20 : 7303
    [1] Pei, R.J., Cheng, Z.L., Wang , E.K., Yang, X.R., Biosens. Bioelectron. 2001, 16:355
    [2] Liu Deng, Yizhe Wang, Li Shang, Dan Wen, Fuan Wang, Shaojun Dong, A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer, Biosensors and bioelectronics, 2008, 24: 951
    [3] Jing Chen, Jianchun Bao, Chenxin Cai, Tianhong Lu, Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode, Analytica Chimica Acta 2004, 516:29
    [4]Yiming Yan, Wei Zheng, Lei Su, and Lanqun Mao, Carbon-Nanotube-BasedGlucose/O2 Biofuel Cells, Adv. Mater. 2006, 18: 2639
    [5] Feng Gao a, Yiming Yan, Lei Su, Lun Wang a, Lanqun Mao, An enzymatic glucose/O2 biofuel cell: Preparation, characterization and performance in serum, Electrochemistry Communications 2007, 9: 989
    [6] Xianchan Li , Haojie Zhou , Ping Yu , Lei Su , Takeo Ohsaka, Lanqun Mao, A Miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate, Electrochemistry Communications 2008, 10:851
    [7]Lina Wu, Xueji Zhang, Huangxian Ju, Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential, Anal. Chem. 2007, 79: 453
    [8] Takashi Kuwahara, Hokuto Ohta, Mizuki Kondo, Masato Shimomura ,Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell, Bioelectrochemistry 2008, 74: 66
    [9] Yueming Tan,Wenfang Deng, Bin Ge, Qingji Xie, Jinhua Huang, Shouzhuo Yao, Biofuel cell and phenolic biosensor based on acid- resistant laccase–glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film, Biosensors and Bioelectronics 2009, 24 :2225
    [10]S. C. Barton, J. Gallaway, P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev. 2004, 104: 4867
    [11]T. Ikeda, K. Kano, Biochim. Biophys. Acta 2003, 121: 1647
    [12]R. A. Bullen, T. C. Arnot, J. B. Lakeman, F. C. Walsh, Biofuel cells and their development, Biosens.Bioelectron. 2006, 21:2015
    [13] J. Kim, H. Jia, P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnol. Adv. 2006, 24:296
    [14] E. Katz, I.Willner, A Biofuel Cell with Electrochemically Switchable and Tunable Power Output,.J. Am. Chem. Soc. 2003, 125:6803-6813
    [15] K. Kendall, Fuel cell technology: A sweeter fuel, Nat. Mater. 2002, 1:211
    [16] Arunas Ramanavicius, Asta Kausaite, Almira Ramanaviciene, Biofuel cell based on direct bioelectrocatalysis, Biosensors and Bioelectronics 2005, 20:1962
    [17] Frank Davis, Séamus P.J. Higson, Biofuel cells—Recent advances and applications , Biosensors and Bioelectronics 2007, 22: 1224
    [18] Bergel, J. S.; Comtat, M. Enzymatic amplification for spectrophotometric andelectrochemical assays of NAD+ and NADH, Anal. Biochem. 1989, 179:382
    [19] Serban, S.; Murr, N. E. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes: New approach for dehydrogenase based biosensors, Biosens. Bioelectron. 2004, 20:161
    [20] Limoges, B.; Marchal, D.; Mavre, F.; Saveant, J., Electrochemistry of Immobilized Redox Enzymes: Kinetic Characteristics of NADH Oxidation Catalysis at Diaphorase Monolayers Affinity Immobilized on Electrodes, J. Am. Chem. Soc. 2006, 128: 2084
    [21] F. Pariente, E. Lorenzo, F. Tobalina, and H. D. Abruiia, Aldehyde Biosensor Based on the Determination of NADH Enzymatically Generated by Aldehyde Dehydrogenase, Anal. Chem. 1995, 67: 3936
    [22] Clark, W.M., Oxidation-Reduction Potentials of Organic Systems, William and Wilkins. Baltimore, ML 1960.
    [23] Moiroux, J.; Elving, P. J. Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes, Anal. Chem. 1978, 50: 1056
    [24] Jaegfeld, H. Adsorption and electrochemical oxidation behaviour of NADH at a clean platinum electrode, J. Electroanal. Chem. 1980, 110: 295
    [25]L.Gorton, and E.Dominguez, Electrocatalytic oxidation of NADPH at mediator-modified electrodes, Reviews in Molecular Biotechnology 2002, 82: 371
    [26]Arkady A. Karyakin , Oksana A. Bobrova, Elena E. Karyakina Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes, Journal of Electroanalytical Chemistry 1995, 399:179
    [27]C.-X. Cai, K.-H. Xue, Electrocatalysis of NADH oxidation with electropolymerized films of nile blue A, Analytica Chimica Acta 1997, 343: 69
    [28]Chen-Xin Cai, Kuan-Hong Xue, The effects of concentration and solution pH on the kinetic parameters for the electrocatalytic oxidation of dihydronicotiamide adenine dinucleotide (NADH) at glassy carbon electrode modified with electropolymerized film of toluidine blue O, Microchemical Journal 2000, 64:131
    [29]A.Silber, N.Hampp, Poly (methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors, Biosensors & Booelectronics 1996, 11:215
    [30] Z.-H. Dai, F.-X. Liu, G.-F. Lu, J.-C. Bao, Electrocatalytic detection of NADH and ethanol at glassy carbon electrode modified with electropolymerized films frommethylene green, J Solid State Electrochem 2008, 12:175
    [31]Chen-Xin Cai, Kuan-Hong Xue, Electrocatalysis of NADH oxidation with electropolymerized films of azureⅠ, Journal of Electroanalytical Chemistry 1997, 427:147
    [32]Hong-Yuan Chen, Dong-Mei Zhou, Electrocatalytic oxidation of NADH at a gold electrode modified by thionine covalently bound to self-assembled cysteamine monolayers, Journal of Electroanalytical Chemistry 1997, 422:21
    [33] S. Garcia Mullor, M. Sknchez-Cabezudo, A.J. Miranda Ordieresb, B. Lbpez Ruiz, Alcohol biosensor based on alcohol dehydrogenase and Meldola Blue immobilized into a carbon paste electrode, Talanta 1996, 43:779
    [34] Ming Zhou, Li Shang, Bingling Li, Lijian Huang, Shaojun Don, The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes, Electrochemistry Communications 2008, 10:859
    [35]Lina Wu, Xueji Zhang,and Huangxian Ju, Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential, Anal. Chem. 2007, 79:453
    [36] Mu Yang, Jin Ma, Shujiang Ding, Zhaokai Meng, Jinge Liu, Tong Zhao, Lanqun Mao, Yi Shi, Xigao Jin, Yunfeng Lu, Zhenzhong Yang, Phenolic Resin and Derived Carbon Hollow Spheres, Macromol. Chem. Phys. 2006, 207:1633
    [37] S. Shleev, A.E. Kasmi, T. Ruzgas, L. Gorton, Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode, Electrochem. Commun. 2004, 6: 934
    [38] S. Tsujimura, H. Tatsumi, J. Ogawa, S. Shimizu, K. Kano, T. Ikeda, Bioelectrocatalytic reduction of dioxygentowater at neutral pH using bilirubinoxidase as an enzymeand 2,2’–azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator, J. Electroanal. Chem. 2001, 496: 69
    [39] N. Mano, H.-H. Kim, A. Heller, On the relationship between the characteristics of bilirubin oxidases and O2 cathodes based on their“wiring”, J. Phys. Chem. B 2002, 106:8842
    [40] Ming Zhou, Li Shang, Bingling Li, Lijian Huang, Shaojun Dong, The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes, Electrochemistry Communications 2008, 10: 859
    [41] Liande Zhu , Ruilan Yang, Xiaoyan Jiang, Dongxu Yang, Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode, Electrochemistry Communications 2009, 11: 530
    [42]Francesco Ricci, Aziz Amineb, Danila Mosconea, Giuseppe Palleschi, A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications, Biosensors and Bioelectronics 2007, 22: 854
    [43] Y.C. Tsai, S.Y. Chen, H.W. Liaw, Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sens. Actuators, B Chem. 2007, 125:474
    [44] Y.C. Tsai, J.D. Huang, C.C. Chiu, Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube–alcohol dehydrogenase biocomposite, Biosens. Bioelectron. 2007, 22: 3051
    [45] M.M. Rahman, Muhammad J.A. Shiddiky, Md. Aminur Rahman, Yoon-Bo Shim, A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film, Analytical Biochemistry. 2009, 384:159
    [46] Arnaldo C. Pereira , Marina R. Aguiar , Alexandre Kisner , Denise V. Macedoa, Lauro T. Kubota, Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube, Sensors and Actuators B 2007, 124: 269
    [47] S. Sumana, Rahul Singhal b, Amit L. Sharma b, B.D. Malthotra b, C.S. Pundir, Development of a lactate biosensor based on conducting copolymer bound lactate oxidase, Sensors and Actuators B 2005, 107]: 768
    [48] Hyun C. Yoon, Hak-Sung Kim, Electrochemical characteristics of a carbon-based thick-film L-lactate biosensor using L-lactate dehydrogenase, Analytica Chimica Acta 1996, 336: 57
    [49] A. Parra , E. Casero , L. V′azquez , F. Pariente , E. Lorenzo, Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces, Analytica Chimica Acta 2006, 555: 308