汽车用TWIP钢腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着汽车行业的快速崛起,汽车车身结构材料研究领域也在突飞猛进发展,而降低汽车自重,减少油耗、控制汽车尾气对环境造成的污染、安全行驶性能的提高成为汽车行业最为关心的话题之一。据相关方面调查,汽车自重每减轻1%,燃料的使用可以降低0.6~1.0%,因此,汽车的轻型化是减低油耗、节约能耗的重要途径之一。尽管近些年来其它轻质合金的大量使用,降低了汽车自重,但由于汽车用钢铁材料具有其不可替代的巨大优势,所以近些年,它在汽车行业材料中仍占主导地位,汽车用材的70~80%均为钢铁材料。汽车用板材中,为减轻自重,大量采用低合金高强度钢板已成为行业发展的必然态势,然而随着钢板强度的提高,其加工成型性能逐渐降低。实现当代汽车的轻量化是许多大型钢厂和汽车公司的重点研究内容,而研制和开发高强高塑性钢会极大地促进高强度钢板的制造及基础应用技术进步。
     TWIP(Twinning Induced Plasticity)钢是一种孪晶诱导塑性钢,具有极高的塑性(60~80%)、中等的抗拉强度(600~800MPa)以及高的应变硬化能力,其能量冲击功是现阶段使用高强钢的两倍。因此,TWIP钢可以更好地减轻车体自重,增强车体抵抗撞击能力,减轻车身钢板的受力变形程度,提高汽车的行驶安全性,体现了环保、节能、安全的新时代要求。
     本工作以面心立方结构的TWIP钢为研究对象,采用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)电化学工作站等测试设备系统研究了不同处理状态TWIP钢试样的微观结构特征及其力学性能;通过盐雾腐蚀实验和应力腐蚀实验,研究了TWIP钢的腐蚀机制并对其应力腐蚀敏感性进行了评价;最后通过显微硬度分析、组织形貌观察,讨论了TWIP钢样品带状组织形成原因及其消除方法。
     主要研究结论如下:
     1.退火态和变形态TWIP钢在浓度为5%的NaCl盐雾腐蚀条件中表现出不同的腐蚀规律,前者腐蚀速率大,生成的腐蚀产物脱落严重,后者腐蚀程度较轻。作为汽车用钢,TWIP钢的耐蚀性较低,在NaCl盐雾情况下,需要对TWIP钢进行一定的表面处理。而变形后,孪晶密度的增大导致重位点阵晶界增多,使材料的耐蚀性提高,腐蚀速率降低。因此,在对TWIP钢进行腐蚀防护研究中,可以将表面处理和加工变形相结合,提高TWIP钢的耐蚀性。
     2.TWIP钢试样的应力腐蚀敏感性随着试验介质中NaCl浓度的升高而增加。随着NaCl浓度的增大,试样的断面收缩率逐渐减小,延伸率逐渐减小。应变速率为1×10-5时,TWIP钢具有较好的应力腐蚀敏感性。TWIP钢的断口形貌为河流花样状,属于脆性断裂。为防止工件发生应力腐蚀,首先应合理选材,尽量减少使用应力腐蚀敏感性高的材料,可以采用抗应力腐蚀开裂的不锈钢品种,如高Ni奥氏体钢、高纯奥氏体钢等。其次,在对零部件进行设计的时候,应减少应力集中。另外,改善腐蚀环境,在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的良好措施。采用金属或非金属保护层,可以起到隔绝腐蚀介质的作用。此外,采用阴极保护法以及电化学保护也能够减小或防止止应力腐蚀。
     3.带状组织的产生是由于Mn和S的存在,从而形成明暗相间的带状结构。含碳量较低时,奥氏体的稳定性较差。导致带状组织形成的过程是由浇注开始。
With the rapid progress in the structural materials of vehicle, how to reduce vehicle's weight, reduce fuel consumption,control pollution of the environment and improve the driving safety factor has aroused great concern in many automotive industries. According to some official statistics, after reducing vehicle's weight for 1%, the use of fuel can reduce by 0.6~1.0%. Therefore, make the car lighter will be an important way to reduce fuel consumption (about 50%). Although in recent years, many kinds of materials have been used to decrease vehicle's weight, the proportion of iron and steel has been decreased to some extent. But the steel has its unique advantages as car materials. It will dominate the automotive industry in the following years. The proportion of steel in automotive materials is up to 70~80%.
     In order to reduce weight, a large number of high-strength steel has become a surely trend. As the strength of steel improved, its molding processing performance was worse. It is worthy doing research on the high-strength, high ductility steel to achieve lighter car in recent years, which greatly facilitated the manufacture of high strength steel and application of technical progress.
     TWIP (Twinning Induced Plasticity) steel is a kind of steel with high plasticity index (60~80%), high strength (600~800MPa) and high strain hardening rate. Its impact energy absorption is doubled the usual high strength steel. Therefore, it can greatly reduce the body weight, increase body resistance to impact capacity, reduce the deformation of the body plate, and finally increase the safety of vehicle operation.
     In this work, TWIP steel is investigated by using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical workstation system test equipment to investigate the characteristics of different shape and mechanical properties; by using salt spray corrosion test and stress corrosion test, the corrosion mechanisms were evaluated; Finally, micro-hardness analysis, organization observations were carried out to discussed the formation of banded structure in TWIP steel. Analysis the causes and elimination of banded structure. The main conclusions are as follows:
     1. As-annealed and as-deformed TWIP steel placed in 5% NaCl salt spray corrosion conditions for different time. After this experiment, the corrosion rate of the former is large, the corrosion product picked off seriously, while the latter was corroded lighter. As automobile steel, TWIP steel shows low corrosion resistance in NaCl salt spray. It should be taken measures to improve TWIP steel's surface. After being deformed, TWIP steel change its microstructure. The increase of twin density and quantities of coincidence site lattice in grain boundary lead to increase corrosion resistance of the material. Therefore, in the corrosion protection study of TWIP steel, surface treatment and processing deformation can be combined to improve the corrosion resistance.
     2. The SCC of TWIP will be accelerated with the increase concentration of NaCl. When the strain rate of TWIP steel is 1×10-5, it has more stress corrosion sensitivity. Different concentrations of NaCl solution on the TWIP steel SCC was significant. After SSRT tests, TWIP steel's tensile strength decreased with the increasing concentration of Cl-. The time required for fracture was shortened. 3. Banded structure was the result of the presence of Mn and S, MnS inclusions make the band structure more apparent. When the carbon content is low, austenite will be unstable.
引文
[1]林泉.汽车涂装防腐技术在现代汽车中的应用[J].科技信息,2010,24:788-789.
    [2]刘国勋.金属学原理[M].北京:冶金工业出版社,1980.
    [3]Frommeyer G., Udo B., Peter N.. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ International,2003,3:438-446.
    [4]黄宝旭,王晓东,戎咏华.TWIP钢研究的现状与展望[J].热处理,2005,20(4):4-6.
    [5]黎倩,熊荣刚,陈佳荣等.TWIP钢的显微组织与变形机制研究[D].上海:中国科学院上海冶金研究所,2000.
    [6]熊荣刚,符仁钰,苏钰等.动态拉伸条件下TWIP钢的断裂机制[J].上海金属,2008,30(5):12-15.
    [7]米振莉,唐荻,江海涛等.Fe-28Mn-3Si-3Al TWIP钢变形过程中的孪晶观察[J].钢铁,2007,42(12):73-76.
    [8]李光瀛,周积智.新一代高强塑性钢的开发与应用[J].轧钢,2001,28(1):1-10.
    [9]王轶娜,黎倩,何燕霖.高强度高塑性TWIP钢的组织和性能[J].热处理,2006,21(3):25-30.
    [10]吴俊良,文玉华,李宁等.两种方法分析高锰钢和18-8不锈钢加工硬化行为的对比[J].机械工程材料,2009,33(9):68-71.
    [11]高能量冲击接触载荷下高锰钢组织形态与加工硬化机制[J].热加工工艺,1999,6:3-7.
    [12]Bouaziz O., Guelton N.. Modelling of TWIP effect on work-hardening[J]. Materials science and Engineering,2001,319-321:246-249.
    [13]Petrov Y., Yakubtsov I.. Thennodynamic calculation of stacking fault energy for multicomponent alloys with F.C.C.lattice based on iron[J]. Phys Met Metallogr,1986,62(2): 34-38.
    [14]陈伟,施哲,赵宇.氮化硅锰、钒氮合金生产HRB500E高强度抗震钢筋应用研究[J].材料热处理技术,2010,33(4):35-39.
    [15]Schumann H., Technik J.. Driving Force for γ→Martensitic Transformation and Stacking Fault Energy of γ in Fe-Mn Binary System[J]. Metall Mater Trans A,2000,31(2):355-360.
    [16]Volosevich P.,Grindnev V., Petrov Y.. Manganese Influence on Stacking-Fault Energy in Iron-Manganese Alloys[J]. Phys Met Metallogr,1976,42:126-130.
    [17]Lee Y., Choi C Driving Force for ε→γ→ Martensitic Transformation and Stacking Fault Energy of y in Fe-Mn Binary System[J]. Metall Mater Trans A,2000,31:355-360.
    [18]王威,陈淑梅,严伟等.氮对冷变形高氮奥氏体不锈钢微观结构的作用[J].材料热处理学报,2010,31(7):35-39.
    [19]徐祖耀.马氏体相变和贝氏体相变研究十年及其展望[J].兵器材料科学与工程,1988, 10:33-37.
    [20]李大赵,不同变形温度对TWIP钢组织和性能的影响[J].新技术新工艺,2010,4:65-66.
    [21]Yang P., Xie Q., Meng L.. Dependence of deformation twinning on grain orentation in a high manganese austenitic steel[J]. Scripta Materialia,2006,52:629-631.
    [22]徐文亮,张忠铧,张弛.汽车用特钢的发展现状及前景[J].宝钢技术,2007,6:17-22.
    [23]Allain S., Chateau J., Bouaziz O.. A physical model of the twinning-induced plasticity in a high manganese austenite steel[J]. Mater. Sci. Eng. A,2004,387-398:143-147.
    [24]王书晗,刘振宇,王国栋等.热处理工艺对TWIP钢组织性能的影响[J].2008,29(9):1283-1289.
    [25]余永宁.金属学原理[M].北京:冶金工业出版社,2000.
    [26]严玲,唐荻,米振莉等.不同加工工艺对高强高塑性TWIP钢组织与性能的影响[J].2005.8:15-17.
    [27]李大赵,卫英慧,刘春月等.汽车用TWIP钢的基础研究现状[J].钢铁研究学报,2009,2:1-5.
    [28]刘向海,刘薇,刘嘉斌等.铜对孪晶诱发塑性合金组织和性能的影响[J].材料科学与工程学报,2011,29(9):131-133.
    [29]Kalidindi S.. Modelling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals[J]. Int J Plast,2001,17:837-842.
    [30]Ueji R., Tsuchida N., Terada D., et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J]. Scripta Mater,2008,59:963-966.
    [31]付小强,吴素君,李志鹏等.高强度管线钢连续冷却转变及组织研究[J].金属热处理,2010,35(1):51-57.
    [32]Dini G, Najafizadeh A., Ueji R.. Tensile deformation behavior of high manganese austenitic steel:The role of grain size[J]. Materials & Design,2010,31(7):3395-3402.
    [33]何叶东.材料腐蚀与防护概论[M].北京:机械工业出版社,2005.
    [34]白煜.氢对双相不锈钢和汽车碳钢腐蚀性能的影响[D].北京:北京科技大学,2005.
    [1]盐雾试验标准及试验结果的判EB/OL]. http://www.ybzhan.cn/st6661/Article_28169.html
    [2]乔丽杰,王燕斌,褚武杨.应力腐蚀机理[M].杭州:科学出版社.
    [3]张亮,李晓刚,杜翠薇.管线钢应力腐蚀机理的研究现状[J].装备环境工程,2007,4(6):1-6.
    [4]Li Y., Fan C., Rong L., et al. Hydrogen embrittlement resistance of austenitic alloys and aluminium alloys[J]. Acta Metallurgica Sinica,2010,5:11.
    [5]戴哲峰.316L不锈钢在复杂介质环境中的应力腐蚀试验[D].杭州:浙江工业大学,2009.
    [6]常铁军,刘喜军.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [7]安碧丽,徐用吉,黄炜等.材料硬度表达形式的现状与规范化[J].中国科技期刊研究,2005,5:419-420.
    [8]杨晶.扫描隧道显微镜和扫描电子显微镜的联用[J].科技创新导报,2008,4:11-13.
    [9]朱琳.扫描电子显微镜及其在材料科学中的应用[J].吉林化工学院学报,2007,24(2):82-92.
    [1]Grassel O.. High Strength Fe-Mn-C(Al, Si) TRIP/TWIP Steel Development Properties Application [J]. International J Plasticity,2000,16:1391-1409.
    [2]Frommeyer G.. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purpose [J]. ISIJ International,2003,43(3):438-446.
    [3]Kannan M., Et al. Comparative studies on the corrosion properties of a Fe-Mn-Al-Si steel and an interstitial-free steel[J]. Corrosion Science,2008,50:2879-2884.
    [4]Baghdasarian, Ara. Corrosion resistance of TRIP Steels[J]. Corrosion,1975,2:182-184.
    [5]Kim J.. On the Tensile Behavior of High-Manganese Twinning-Induced Plasticity Steel[J]. Metallurgical and Materials Transactions,2009,40(13):3147-3158.
    [6]Hamada A.. Manufacturing, mechanical properties and corrosion behavior of high-Mn TWIP steels[D]. Finland:Acta Univ. Oul.,2007.
    [7]何业东.材料腐蚀与防护概论[M].北京:机械工业出版社,2005.
    [8]陈希杰.高锰钢[M].北京:机械工业出版社,1989.
    [9]李红,张波,张俭秋等.合金元素Sb和Mn对Zn腐蚀的影响[J].中国腐蚀与防护学报,2008,28(5):1-8.
    [1]李少岩,齐宝军.汽车覆盖件冲压成型过程中的常见缺陷及分析[J].西部交通科技,2009,1:54-57.
    [2]Jones, Robin L., et al. Stress corrosion cracking and corrosion fatigue of some surgucal implant materlals in a physiological saline environment. Corrosion,1978,34(7):226-236.
    [3]Wurushihara, Wataru et al. Evaluation of high strength steels delayed fractures with SSRT[J]. Research and Development Kobe Steel Engineering Reports,2002,52(3):57-61.
    [4]Fukuzumi, Tatsuo, et al. Improvement of sensitivity to delayed fracture from pitting corrosion of spring steels for automobile by alloying[J]. Journal of the Iron and Steel Institute of Japan, 2006,92(2):58-67.
    [5]石德珂.材料科学基础[M].北京:机械工业出版社,2003.
    [6]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社,1990.
    [7]黄嘉琥.恒应变速度应力腐蚀试验综述[J].化工与通用机械.1979,6(12):41-46.
    [8]褚武扬,谷鹰,高克玮.应力腐蚀机理研究的新进展[J].腐蚀科学与防护技术,1995,7(2):97-101.
    [9]马毅.奥氏体不锈钢的应力腐蚀研究[D].大连:大连理工大学,硕士学位论文,2009.
    [10]Parkings R.. Stress Corrosion Cracking-The Slow Strain Rate Technique[J]. Eds. G. M. Uglansky and J.H.Payer, ASTM,1979,4:5-7.
    [11]褚武扬,乔利杰,高克玮.阳极溶解型应力腐蚀[J].科学通报,2000,15(24):2581-2588.
    [12]张国英,张辉,方戈亮等.Fe-Cr-Al合金氧化膜形成机理电子理论研究[J].物理学报,2009,58(9):6441-6444.
    [1]陈学群,孔小东,杨思诚.硫化物夹杂对低碳钢孔蚀扩展的影响[J].中国腐蚀与防护学报,2000,20(2):65-73
    [2]李洪生,高辉,钢中硫化锰的形态及对钢性能的影响[J].一重技术,2004,3:4-6.
    [3]时振明,倪培亮,卢栋等.S CM 822H齿轮钢棒材带状组织控制研究[J].莱钢科技,2009,2:37-38.
    [4]Leslie W.,余宗森,谢善骁.钢的物理冶金学[M].北京:冶金工业出版社,1988,177-181.
    [5]Xu J.; Yu J., Su K.. The Effect of Sulphide on Fatigue Crack Initiation of Cold Ring-Rolling Mandrel[J]. China Metal Forming Equipment & Manufacturing Technology,2006,4:80-82.
    [6]Brennert, Eklund S., Source G.. Piting corrosion in stainless steel[J]. Scandinavian Journal of Metallurgy,1973,2(5):269-272.
    [7]朱伟华,王玲玲.低碳合金钢中带状组织的形成机理和消减方法[J].莱钢科技,2005,1:14.
    [8]曹慧泉,李广敏,颜慧成等.低碳贝氏体钢中硫化物的析出行为[J].钢铁研究学报,2010,22(3):56-60.