用户名: 密码: 验证码:
环氧乙烷氢甲酯化合成3-羟基丙酸甲酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对环氧乙烷氢甲酯化法合成3-羟基丙酸甲酯进行了系统研究,包括羰基钻催化剂制备、配体筛选、工艺优化和反应机理的探讨。通过研究,确定了最优催化剂体系和工艺条件,并对环氧乙烷氢甲酯化的反应机理进行了初步探讨。具体内容与结论如下:
     以醋酸钴为前驱体分别制备了八羰基二钴和四羰基钻钠两种催化剂,并对其活性进行了评价,结果表明,四羰基钴钠比八羰基二钻制备条件温和,成本低,更易实现。
     考察了膦配体和N-杂环配体等不同配体及助剂对反应的影响,发现N-杂环配体效果明显优于膦配体,而N-杂环配体中有羟基的3-羟基吡啶优于无羟基的咪唑,3-羟基吡啶受PH影响比较大,弱碱性对反应更有利。
     对3-羟基丙酸甲酯合成工艺条件进行了优化,得出环氧乙烷氢甲酯化合成3-羟基丙酸甲酯的最佳反应条件为:环氧乙烷浓度5 ml/30 ml甲醇,n(配体):n(催化剂)=6:1,压力7.5 MPa,温度75℃,时间4h;在此条件下选择性和收率分别为95.7%和64.0%。
     最后,通过GC-MS分析,对副产物的组成和形成原因进行了探讨。以缔合机理(SN2)为基础,探讨了环氧乙烷合成3-羟基丙酸甲酯的反应机理。此反应中催化剂活性中间体为[Co(CO)4]-,催化剂的配体对催化剂活性中间体的形成和环氧乙烷的激活起重要作用。反应经过HCo(CO)4络合、CO插入、CO缔合、中间体反应(两条途径:直接生成和异构后生成)四个阶段完成。
The carbomethoxylation of ethylene oxide to produce methyl 3-hydroxypropanoate was systematically studied in this paper, including the preparation of cobalt carbonyl catalyst, ligands selecting, process optimization and discussion of reaction mechanism. The optimum catalytic system and process was obtained and the reaction mechanism on carbomethoxylation of ethylene oxide was proposed in the research. The detailed contents and conclusions were as follows:
     The dicobalt octacarbonyl and tetracarbonyl cobaltate sodium were prepared with acetate cobalt as precursor. Their activities were evaluated. The results indicated that the tetracarbonyl cobaltate was more easily prepared with milder condition and lower cost.
     The effect of different ligands incluing phosphine and N-heterocycle ligands and additives on the reaction was investigated. It was found that the effect of N-heterocycle ligands was better than that of phosphine ligands and 3-hydroxypyridine with hydroxyl was superior to imidazole in N-heterocycle ligands. Moreover, the effect of 3-hydroxypyridine was influenced seriously by PH, within the additives the weak base was favor for the reaction.
     The synthesis process of methyl 3-hydroxypropanoate has been optimized. The yield and selectivity of methyl 3-hydroxypropanoate is 64.0% and 95.7% respectively at the optimum reaction condition:0.11 mol EO/30 ml methanol, 6:13-OH-Py/Co2(CO)8 ratio,7.5 MPa CO,75℃,4h.
     At last, the composition and formation reason of byproducts were studied by GC-MS analysis. On the basis of association mechanism(SN2), the reaction mechanism on synthesis of methyl 3-hydroxypropanoate has been proposed. The active intermediate of catalyst was [Co(CO)4]-, and the ligand played an important role on the formation of active intermediate for catalyst and activation of ethylene oxide. The reaction steps included HCo(CO)4 complex, CO insertion, CO association and intermediate reaction(two steps:formed directly and after isomerization).
引文
[1]姜兴茂.1,3-丙二醇的合成工[J].上海化工,1998,23(6):35-39.
    [2]Doerr,Marvin L.. Process for producing poly (1,3-Propylene Terephthalate). Eur Pat Appl, EP 0 547 553 Al,1993.
    [3]杨菊群,王幸宜.1,3-丙二醇的合成工艺进展[J].化学工业与工程技术,2002,22(2):11-14.
    [4]黄军左,刘宝生,陈小平等.环氧乙烷羰基合成1,3-丙二醇催化体系的研究[J].精细化工中间体,2004,35(3):29-31.
    [5]藤本克宏,加藤仁一郎,聚对苯二甲酸丙二醇酯纤维及其制造方法.[p].CN1358242,2002.
    [6]周昱,姚洁,王公应.1,3-丙二醇合成工艺研究进展[J].天然气化工,2006,31(1):66-74.
    [7]陈庆岭,李星云.1,3—丙二醇研发状况及工业化展望[J].化工中间体,2009,(7):19-23.
    [8]毕生雷,杜玉超等.1,3-丙二醇的生产和市场分析[J].河南化工,2009,26(10):26-28.
    [9]常瑜,刘春杰,刘宝生等.环氧乙烷羰基合成1,3-丙二醇的催化剂研究进展[J].天然气化工,2010,35(5):67-70.
    [10]杨佳庆,黄象安,顾利霞.1,3-丙二醇合成新进展[J].合成纤维工业,1999,22(1):26-28.
    [11]刘银乾,段启伟.1,3-丙二醇的制备方法[J].合成纤维工业,2002,25(2):42-45.
    [12]胡斌,殷元骐,虎孝忠等.环氧乙烷羰基合成3-羟基丙醛和1,3-丙二醇方法[P].CN 1299803A,2001.
    [13]吕顺丰,王世亮,彭斌等.制备3-羟基丙醛和1,3-丙二醇的方法[p].CN 1310864C,2007.
    [14]崔小明.国内外1,3-丙二醇生产技术研究进展[J].精细化工原料及中间体,2006,3:33-37.
    [15]Hoon Sik Kim, Jin Yong Bae, Je Seung Lee, etc. An efficient catalytic system for the carbomethoxylation of ethylene oxide[J]. Appl. Catal. A:Gen, 2006,301: 75-78.
    [16]崔芳,陈静,夏春谷等.由3-羟基丙酸甲酯制备1,3-丙二醇的方法[P].CN 101195558A,2008.
    [17]吕志果,李娟,陈燕等.四羰基钻钾催化环氧乙烷氢酯基化反应性能研究[J].分子催化,2009,23(3):248-252.
    [18]吕志果,冯看卡,郭振.3-羟基丙酸甲酯加氢制1,3-丙二醇的纳米铜基催化剂研究[J].精细化工,2008,25(4):362-365.
    [19]应于舟,王荣富,赵正康等.环氧乙烷氢甲酯化制3-羟基丙酸甲酯工艺条件和动力学研究[J].天然气化工,2009,34(2):31-44.
    [20]应于舟,赵振康,杨菊等.环氧乙烷催化合成3-羟基丙酸甲酯的研究[J].华东理工大学学报(自然科学版),2008,34(3):334-337.
    [21]赵正康,何明康,杨菊群.环氧乙烷羰基合成3-羟基丙酸酯后的分离工艺[P].CN 1970518A,2007.
    [22]Haas T., Arntz D.B.. Process for the production of 3-hydroxyalkanals[P]. US: 5 276 201,1994.
    [23]Unruh J. D., Ryan D. A., Nicolau I.. Method for the manufacture of 1,3-propanediol [P]. US: 5 093 537,1993.
    [24]Tsunoda Takashi, Nomura Kouji.. Process for producingl,3-propanediol [P]. US: 6 911 566,2005.
    [25]李吉春,赵旭涛.1,3-丙二醇的合成方法及技术进展[J].石化技术与应用,2004,22(1):4-11.
    [26]徐泽辉,郭世卓,等.丙烯醛水合加氢制1,3-PDO[J].石油炼制与化工 2001,32(12):21-24.
    [27]白雪峰.阳离子树酯催化丙烯醛水合反应[J].石油化工,2003,6(32):458-460.
    [28]Menzel K., Zeng A. P., Deckwer W. D.. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae [J]. Enzyme. Microbiol. Techol.,1997(20):82-86.
    [29]修志龙.两步微生物发酵生产1,3-丙二醇的方法[P].CN ZL01138769.6,2004.
    [30]唐宇,龚燕,王晓琳等.1,3-丙二醇发酵液电渗析脱盐的中试研究[J].化工进展,2004,23(1):84-87.
    [31]Malshe V. C., Mandlecha M. V. K..Production of butane-3 diol, Propane 1-3 diol and other diols and polyols[p]. PCT Int Appl, WO 0056688,2000.
    [32]王海京,段启伟,杜泽学.1,3—丙二醇的制备方法[P].CN1431183,2003.
    [33]冯看卡,吕志果,李强.1,3-丙二醇制备工艺技术研究进展[J].合成纤维工业,2007,30(4):46-49.
    [34]Douglas J. Adelman. Wilmington;Neville Everton Drysdale.Manufacture of 1,3-propanediol esters from formal dehyde and ethylene using modified frims reaction[P]. US: 6 111 135,2000.
    [35]徐兆瑜.1,3—丙二醇生产技术进展[J].化工中间体,2004,1:13-16.
    [36]Slaugh Lynn H., Weider Paul R..Process for making 3-hydroxypropanal and 1,3-propanediol [P].US: 5 256 827, 1993.
    [37]Powell Joseph B.,Slaugh Lynn H., Forschner Thomas C., etc. Cobalt- catalyzed process for preparing 1,3-propanediol using a lipophilic bidentate phosphine promoter[p].US: 5 545 766,1996.
    [38]吴素芳,郭青.羰基合成1,3-丙二醇催化剂研究进展[J].化工科技,2001,9(1):64-67.
    [39]Weider Paul R., Powell Joseph B., Slaugh Lynn H.,etc. Cobalt-catalyzed process for preparing 1,3- propanediol using a lipophilic phosphine oxide[p]. US: 5 563 302,1996.
    [40]金栋.1,3—丙二醇生产技术进展[J].杭州化工,2006,6(2):15-19
    [41]Powell Joseph B., Slaugh Lynn H., Forschner Thomas C., etc. Process for preparing 1,3-propanediol[p].US: 5 463 144,1995.
    [42]Powell Joseph B., Slaugh Lynn H., Forschner Thomas C.,etc. Process for preparing 1,3-propanedol[p].US: 5 463 145,1995.
    [43]Slaugh Lynn H., Powell Joseph B., Forschner Thomas C.,etc. Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic quaternary arsonium salt promoter [p].US: 5 545 765,1996.
    [44]Slaugh Lynn H., Powell Joseph B., Forschner Thomas C., etc. Process for preparing 1,3-propanediol[p]. US: 5 463 146,1995.
    [45]Powell Joseph B., Slaugh Lynn H.,Semple Thomas C., etc. Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic tertiary amine promoter[p]. US: 5 585 528,1996.
    [46]Semple Thomas C., Powell Joseph B., Slaugh Lynn H., etc. Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic dihydroxyarene promoter [p].US: 5 576 471,1996.
    [47]Han Yuan-Zhang. Cobalt-catalyzed process for preparing 1,3-propanediol [p].US: 6 376 724,2002.
    [48]Han Yuan-Zhang. Cobalt-catalyzed process for preparing 1,3-propanediol. [p].US: 6 323 374,2001.
    [49]Knifton J. F., James T. G., Allen K. D. etc. One-step production of 1,3-propanediol from ethylene oxide and syngas with a catalyst with a N-heterocyclic ligand[P]. US: 6 586 643,2002.
    [50]Powell Joseph Broun, Weider Paul Richard, Knifton John Frederick, etc. Synthesis of aliphatic 1,3-diols utilizing reduced ligand concentration and water extraction [p].US: 6 660 892,2003.
    [51]K.D.艾伦,T.G.詹姆斯,J.F.尼芬等.利用钴-铁催化剂由环氧乙烷和合成气一步生产1,3-丙二醇[P].CN 1538877A,2004.
    [52]Klaus Hinterding, Eric N. Jacobsen. Regioselective carbomethoxylation of chiral epoxides:a new route to enantiomerically pure β-hydroxy esters[J].J. Org. Chem. 1999,64:2164-2165.
    [53]Scott E. Denmark, Moballigh Ahmad. Carbonylative ring opening of terminal epoxides at atmospheric pressure[J]. J. Org. Chem.,2007,72:9630-9634.
    [54]Liu Jianhua, Chen Jing, Xia Chungu. Methoxycarbonylation of propylene oxide:a new way to β-hydroxybutyrate[J]. J. Mol. Catal. A:Chem.,2006,250:232-236.
    [55]Liu Jianhua, Wu Hugjiltu, Xu Liwen, etc. A novel and highly effective catalytic system for alkoxycarbonylation of(S)-propylene oxide[J]. J. Mol. Catal. A:Chem. 2007,269:97-103.
    [56]Heck R. F., Breslow D. S.. The reaction of cobalt hydrotetracarbonyl with olefins [J]. J. Am. Chem. Soc.,1961,83(19): 4023-4027.
    [57]雷鸣,冯文林,徐振锋等.改性羰基钴催化氢甲酰化反应系列基元反应的理论研究[J].高等学校化学学报.2001,22(3):455-459.
    [58]郭青松.羰基合成1,3-PDO催化剂和工艺研究[D].杭州:浙江大学,2002.
    [59]C. W.Bird. Transition metal intennediate in organic synthesis[M]. London, Logos Press,1967:117.
    [60]Clark, A.C.. Tetracarbonylhydrocobalt and the hydroformylation reaction[J].J. Org. Chem.,1974,39(16):2405-2407.
    [61]Whyman,R.. In situ infrared spectral studies on the cobalt carbonyl-catalysed hydroformylation of olefins[J]. J. Organomet. Chem.,1974,66(1):C23-25.
    [62]Whyman,R.. Tetranuclear and dinuclear phosphine- and arsine-substituted rhodium carbonyls; infrared spectral evidence for the formation of dirhodium octacarbonyl[J]. J. Chem, Soc.,1972,1375-1381.
    [63]Parshell.G. W.. Industrial applications of homogeneous catalysis. A review[J]. J. Mol. Catal.,1978, (4):243-270.
    [64]Heck, R. F., Breslow, D. S.. Reactions of alkyl-and acyl-cobalt carbonyls with triphenylphosphine[J].J. Am. Chem. Soc.,1960,82(16):4438-4439.
    [65]Heck, R. F., Breslow, D. S.. Allylcobalt carbonyls[J]. J. Am. Chem. Soc.,1960, 82(3):750-751.
    [66]Heck, R. F., Breslow, D. S.. Acylcobalt carbonyls and their triphenylphosphine complexes[J]. J. Am. Chem. Soc.,1962,84(13):2499-2502.
    [67]Heck, R. F.. Steric and electronic effects in the dissociation of cobalt carbonyl derivatives. [J]. J. Am. Chem. Soc.,1963,85(6):651-654,655-657,657-661.
    [68]Sisak A., Ungvary F., Marko L.. Catalytic effect of bases on the formation of HCo(CO) from Co2(CO)8 and hydrogen [J]. Organometallics,1983,2(9):1244-1246.
    [69]Sisak, A., Marko, L.. Mechanistic studies on the disproportionation of dicobald-octacarbonyl with hard Lewis bases[J]. J. Organomet. Chem.,1987,330:201-206.
    [70]Fachinetti G.P., Del Cima F., Sbrana Q., etc. Dihydrogen activation promoted by homonuclear ion pairs involving cobalt (Ⅱ) and cobalt ( -Ⅰ) [J]. J. Organomet. Chem. 1985,287(1):C23-C24.
    [71]Fachinetti G., Fochi G., Funaioli T.. Pyridine induced disproporti-onation reaction of Co2(CO)8 in THF:Homonuclear ion pairs and dihydrogen activation [J].J. Organomet. Chem.,1986,301(1):91-97.
    [72]Allmendinger M., Zintl M., Eberhardt R., etc. Online ATR-IR investigations and mechanistic understanding of the carbonylation of epoxides-the selective synthesis of lactones or polyesters from epoxides and CO[J]. J. Organomet. Chem.,2004,689(5): 971-979.
    [73]Molnar F., Luinstra G. A., Allmendinger M., etc. Multisite catalysis:A mechanistic study of β-Lactone synthesis from epoxides and CO-insights into a difficult case of homogeneous catalysis[J]. Chem. Eur. J.,2003,9(6):1273-1280.
    [74]Allmendinger M., Eberhardt R., Luinstra G.,etc. The cobalt-catalyzed alternating copolymerization of epoxides and carbon monoxide:a novel approach to polyesters [J]. J. Am. Chem. Soc.,2002,124 (20):5646-5647.
    [75]Tuba R., Mika L., Bodor A., etc. Mechanism of the pyridine-modified cobalt-catalyzed hydromethoxycarbonylation of 1,3-Butadiene[J]. Organometallics,2003, 22(8):1582-1584.
    [76]Heck R. F.. The reaction of epoxides with cobalt hydrocarbonyl and cobalt tetracarbonyl anion[J].J. Am. Chem. Soc.,1963,85(10):1460-1463.
    [77]Karamer J. W., Lobkovsky E.B., Coates G.W.. Practical β-lactone synthesis:epoxide carbonylation at 1 atm[J]. Org. Lett.,2006,8(17):3709-3712.
    [78]Schmidt J.A.R., Lobkovsky E. B., Coates G.W.. Chromium(Ⅲ) octaethylporphy-rinato tetracarbonylcobaltate:a highly active, selective, and versatile catalyst for epoxide carbonylation[J]. J. Am. Chem. Soc.,2005,127(32):11426-11435.
    [79]Joseph A. R. Schmidt, Viswanath Mahadevan, Yutan D. Y. L. Getzler, etc. A readily synthesized and highly active epoxide carbonylation catalyst based on a chromium porphyrin framework:expanding the range of available β-lactones[J]. Org. Lett. 2004,6(3):373-376.
    [80]Getzler Y. D.Y.L., Mahadevan V., Lobkovsky E. B.,etc.Stereochemistry of epoxide carbonylation using bimetallic Lewis acid/metal carbonyl complexes[J]. Pure Appl. Chem.,2004,76(3):557-564.
    [81]Allmendinger M., Eberhardt R., Luinstra G. A., etc. Cobaltcarbony] complexes-tunable catalysts for the carbonylation of epoxides[J]. Z.Anorg. Allg. Chem.,2003,629(7-8): 1347-1352.
    [82]Mahadevan V., Getzler Y.D.Y.L., Coates G. W.. [Lewis Acid] [Co(CO)1]- complexes:a versatile class of catalysts for carbonylative ring expansion of epoxides and aziridines[J].Angew. Chem. Int. Ed.,2002,114(15):2905-2908.
    [83]Getzler Y. D. Y. L., Mahadevan V., Lobkovsky E. B., etc. Synthesis of β-Lactones:a highly active and selective catalyst for epoxide carbonylation[J]. J. Am. Chem. Soc. 2002,124(7):1174-1175.
    [84]Lee J. T., Thomas P. J., Alper H.. Synthesis of β-Lactones by the regioselective, cobalt and lewis acid catalyzed carbonylation of simple and functionalized epoxides[J]. J. Org. Chem.,2001,66(16):5424-5426.
    [85]Allmendinger M., Molnar F., Zintl M., etc. Mechanistic aspects of the metal catalyzed alternating copolymerization of epoxides and carbon monoxide [J]. Chem. Eur. J.,2005,11(18):5327-5322.
    [86]Nakano K., Fumitaka K., Nozaki K.. Synthesis of a polyester macromonomer viathe cobalt-catalyzed alternating copolymerization of propylene oxide and carbon monoxide [J]. J. Polym. Sci. Part A:Polym. Chem.,2004,42(18):4666-4670.
    [87]Lee J.T., Alper H.. Alternating copolymerization of propylene oxide and carbon monoxide to form aliphatic polyesters[J]. Macromolecules,2004,37(7):2417-2421.
    [88]Allmendinger M., Eberhardt R., Luinstra G. A., etc. Macromol. Alternating copolymeri-zation reaction of propylene oxide and CO:variation of polymer stereoregularity and investigation into chain termination[J]. Chem. Phys.,2003,204 (4):564-569.
    [89]Church T.L., Getzler Y.D.Y.L., Coates G. W.. The mechanism of epoxide carbonylation by [Lewis Acid] [Co (CO)4] catalysts[J]. J. Am. Chem. Soc.,2006,128(31):10125-10133.
    [90]Kreisz J., Ungvary F., Sisak A., etc. Kinetics of the ring- opening carbonylation of ethyloxirane with hydrido tetracarbonyl cobalt[J]. J. Organoment. Chem.,1991,417 (1-2):89-97.
    [91]Calderazzo F., Fachinetti G., Marchetti F., etc. Preparation and crystal and molecular structure of two trialkylamine adducts of HCo(CO)1 showing a preferential NRH···[(OC)3Co(CO)]- interaction[J]. J. Chem. Soc. Chem. Commun.,1981,4:181-183.
    [92]Allmendinger M., Molnar F., Zintl M., etc. Mechanistic aspects of the metal catalyzed alternating copolymerization of epoxides and carbon monoxide [J]. Chem. Eur. J.,2005,11(18):5327-5332.
    [93]John W. Kramer, Emil B. Lobkovsky, Geoffrey W. Coates.. Practical β-lactone synthesis:epoxide carbonylation at 1 atm[J]. Organic letters,2006,8(17):3709-3712.
    [94]Goodman, S. N., Jacobsen, E. N.. Enantiopure β-hydroxy morpholine amides from terminal epoxides by carbonylation at 1 atm[J]. Angew. Chem. Int. Ed.,2002,41 (24):4703-4705
    [95]Watanabe, Y., Nishiyama, K., Zhang, K., etc. Co2(CO)8-catalyzed ring-opening carbonylation of cyclic ethers using N-silylamines[J].Bull. Chem. Soc. Jpn.,1994, 67(3):879-882.
    [96]Suji,Y., Nishiyama, K., Kobayashi, M., etc. Cobalt catalysed ring-opening carbonylation of cyclic ethers using N-(trimethylsilyl)amines[J]. J. Chem. Soc. Chem. Commun.,1989,1253-1254.
    [97]Eisenmann J., Yamartino R., Howard, J.. Notes-preparation of methyl β- hydroxybutyrate from propylene oxide, carbon monoxide, methanol, and dicobalt octacarbonyl[J]. J. Org. Chem.,1961,26(6):2102-2104.
    [98]Drent, E., Kragtwijk, E.. Carbonylation of epoxides [P]. EP 577,206,1994.
    [99]徐志固.现代配位化学.北京:化学工业山版社,1986:246.
    [100]乐颂光.钻冶金.北京:冶金工业山版社,1987:58.
    [101]Casser L. JP昭48-8094(1973).
    [102]Satyanarayana N., Periasamy M.. Carbonylation of benzyl halides using CoCl2/NaBH1/ CO/NaOH reagent system[J]. Tetrahedron Lett.,1987,28(23):2633-2636.
    [103]李光兴,刘勇.漆原钻法制备四拨基钴钠及羰基化反应[J].应用化学.1998,15(1):116-118.
    [104]李光兴,郑京京,刘勇.Raney-Ni诱导下氯化钴羰化合成Co2(CO)8的研究[J].分子催化,1998,12(6):458-462.
    [105]李光兴,郑京京,刘勇等.常温常压下催化合成羰基钴的方法[P].CN 1167087A,1997.
    [106]赵止康,张旭红,杨菊群.一种八羰基二钴的制备方法[P].CN 1676467A,2005.
    [107]王亚权,刘洁,王盛等.四羰基钴钠的常温常压合成[J].化学通报,1998,8:31-55.
    [108]李光兴,朱治良,蔡晓江等.四羰基钴钠的合成及红外光谱研究[J].化学试剂,1996,18(3):132-135.
    [109]术伟红.四羰基钴钠的制备研究[J].工业催化,2004,12(6):48-50.
    [110]白雪峰,双静媛,王焕民.八羰基二钴的合成[J].化学与粘合,1994,3:154-156.
    [111]李光兴,蔡晓江,朱治良等.硼氢化钠还原法制备四羰基钻钠及羰基化反应[J].合成化学1995,3(3):263-266.
    [112]李光兴,朱治良,蔡晓江等.四羰基钴钠合成及红外光谱研究[J].分子催化,1995,9(4):303-308.
    [113]秦燕璜,吕顺丰.分光光度法测定羰基钴含量[J].石油化工,2003,32:912-914.
    [114]Edgell W. F., Lyford J.. Laser raman and infrared spectra of the tetrahedral Co (CO)4- Ion[J].J. Chem. Phys.,1970,52(9):4329-4334.
    [115]吴越.配位催化中的基元反应,[M]催化化学,1998,301-304.
    [116]Piacenti F.,Bianehi M., Frediani P., etc. Hydroformylation of olefins in the presence of dicobalt octacarbonyl some consideration[J]. J. Organomet. Chem. 1991,417(1-2):77-88.
    [117]Ungvary F., Marko L.. Reaction of HCo(CO)4 and CO with styrene[J]. Organometallics, 1982,1(9):1120-1125.
    [118]Mirbach M. F.. On the mechanism of the Co2(CO)8 catalyzed hydroformylation of olefins in hydroearbon solvents. A high pressure UV and IR study[J]. J. Organomet Chem.,1984,265(2):205-213.
    [119]Mirbach M. F.. The formation of HCo(CO)1 from Co2(CO)8 or Co1(CO)12, a high pressure IR and UV spectroscopic study [J]. Inorg. Chim. Aeta.,1984,88(2):209-211.
    [120]Azran M., Orehin M.. Cleavage of acylcobalt carbonyl with hydridocobalt tetracarbonyl [J].Organometallics,1984,3(2):197-199.
    [121]Kovaesl, Ungvary F., Marko L.. Kinetic investigation of the cleavage of n-Butyryl or isobutyrylcobalt tetracarbonyl with hydridocobalt tetracarbonyl or dihydrogen[J]. Organometallics,1986,5(2):209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700