商用车循环球EPS试验台开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动助力转向(EPS)系统的出现改善了汽车低速行驶时的转向轻便性及高速行驶时的稳定性,EPS能够与其他电子控制系统相结合,提高汽车的驾驶安全性和舒适性。EPS具有节能环保、占用空间小、路感良好、安装维修方便等优点,它的使用范围已经从最初的微型车向中高级轿车、跑车、越野车以及商用车和客车发展,因此,EPS有着广阔的发展前景,是当前汽车技术发展的热点之一。
     本文首先对汽车转向系统的发展历程进行了简单的介绍,分析了EPS国内外的发展现状;然后对EPS进行了详细的介绍,包括:EPS的分类;EPS的优缺点;EPS的典型结构工作原理及关键部件;接着比较了EPS三种助力特性曲线,为后面建立实时仿真模型提供了理论基础,然后介绍了EPS性能评价方法;对EPS的控制策略进行了介绍。通过第一章和第二章的介绍对EPS系统有了较为全面的认识,为循环球EPS试验台的搭建奠定了一定的理论基础。
     第三章首先说明了搭建试验台的必要性,然后对EPS试验台方案进行了对比分析,最终通过比较电液伺服系统和电液比例系统,并根据试验台的要求,选定电液比例加载系统为本试验台的阻力加载方案;然后介绍了循环球EPS试验台的工作原理并对试验台总体布置进行了规划与设计;最后介绍了循环球EPS试验台的主要技术指标及试验台所应实现的基本功能与试验台的用途。
     第四章中对试验台硬件系统进行了设计选型,本章的重点是对阻力加载系统部件的设计选择,在选型确认的过程中对某些部件的结构、特点、工作原理等进行了介绍,并给出了所确定型号的基本参数;然后介绍了试验台数据采集系统,数据采集系统主要由数据采集卡和工控机组成。
     第五章首先对xPC Target进行了介绍,介绍了在xPC Target基础上构建实时仿真系统的方法,并说明了试验台xPC Target信号采集步骤;然后,建立了八自由度车辆模型和轮胎模型,轮胎模型采用Unitire1.0稳态模型,整车模型和轮胎模型完全可以满足试验台实时性的需要,另外还建立了轮胎垂直载荷模型和前轮侧偏角模型;在转向系统模型部分,分别建立了循环球转向器模型、电机模型、控制器模型,其中,电机电流采用PID控制,助力特性采用直线型助力特性曲线;基于Visual C++ 6.0设计了试验台人机交互界面,对试验台主机和目标机之间采用的串口通信方式进行了介绍,然后,介绍了人机交互界面各个模块的组成及功用。
The EPS improves the steering portability when the vehicle speed is low and the controllability and stability when the vehicle is in high speed, the EPS and other electronic control systems can be combined to improve vehicle safety and driving comfort. The EPS has several advantages, such as, energy conversion and environmental protection, small space, good steering feel, and convenient installation and maintenance, its range of application has grown from the original mini-cars to high-class cars, sports cars, SUV and commercial vehicles and passenger cars. Therefore, the EPS has broad prospect, and is one of the hot spots of automotive technology currently.
     Firstly, this paper introduces the development of steering system simply, summaries the status of the EPS domestic and foreign. Then introduces the EPS in detail, including: EPS classification, EPS advantages and disadvantages, operation principle of a typical EPS structure and key components. And then compares the curvers of assist characteristic of all the three kinds, which provides the theoretical basis for the establishment of the real-time simulation model, then presents the evaluation methods of the EPS performance, introduces the control strategy of the EPS. The introduction of the EPS system by chapter one and two lays the foundation for the establishment of the test bench for recirculating ball-type EPS.
     In the third chapter, this paper firstly explains the necessity of building test bench, then compares the test bench plan, and ultimately by comparing the electro-hydraulic servo system and electro-hydraulic proportional system, and in accordance with the requirements of the test bench, selects the electro-hydraulic proportional system as the resistance loading plan. Then presents the operation principle of the test bench for recirculating ball-type EPS and plans and designs the overall layout of the test bench. Finally, presents the main technical indicators of the test bench and the basic functions which should be realized and the useage of the bench.
     The fourth chapter designs and selects the components of the hardware system, the emphasis of this chaper is the design of the components of resistance loading system, in the selection of the components, introduces the structure, characteristics and operation principle of certain parts, and gives the fundamental parameters of the determined components. Then introducs the data acquisition system of the test bench, which is consisted of data acquisition card and industrial computer.
     Chapter five were introduces the xPC Target, and presents the method of the building real-time simulation system based on the xPC Target, and describes the the signal acquisition step of the xPC Target. Then establishes the eight degrees of vehicle model and Unitire1.0 steady-state model, which can fully meet the needs of real-time, and in addition establishes the tire vertical load model and the front wheel side slip angle model. In the steering system model, establishes recirculating ball-type steering model, motor model which current uses PID control, and controller model which uses straight-line type assist characteristic. The man-machine interface is designed based on Visual C++ 6.0, and the serial communication which connects the host PC and target PC is introduced, and then introduces the components and function of each module of the man-machine interface.
引文
[1]陈家瑞.汽车构造(下册)[M].北京:机械工业出版社,2004.
    [2]余志生.汽车理论[M].北京:机械工业出版社,2003.
    [3] Werner Harter,Wolfgang Pfeiffer,Peter Dominke,Gerhard Ruck,Peter Blessing. Future Electrical Steering Systems: Realizations with Safety Requirements[J]. SAE Paper No.2000-01-0822.
    [4] Yuji Kozaki,Goro Hirose,Shozo Sekiya,Yasuhiko. Electric Power Steering(EPS) [J].Motion&Control,No.6,1999.
    [5]林逸,施国标.汽车电动助力转向技术的发展现状与趋势[J].公路交通科技,2001,18(3):79-87.
    [6]施国标,林逸,陈万忠,邹常丰,潘海鹏.汽车电动助力转向试验台测试系统开发[J].测控技术,2005(3):23-25.
    [7] Dominke Peter,Ruck Gerhard.Electric Power Steering-The First Step on the Way to "SteerbyWire"[J].SAE Paper No.1999-01-0401.
    [8] Sunil Murthy, Tomy Sebastian,Buyun Liu. Implications of 42V Battery Power on the Design of Motors for Electric Power Steering System[J]. SAE Paper No. 2000-01-3068.
    [9] Paula Moon, Andrew Burnham,Michael Wang. Vehicle-Cycle Energy and Emission Effects of Conventional and Advanced Vehicles[J]. SAE Paper No. 2006-01-0375.
    [10] Masahiko Kurishige et al. An EPS Control Strategy to Improve Steering Maneuvibi- lity on Slippery Roads[J]. SAE Paper No. 2002-01-0618.
    [11]赵万忠,施国标,林逸,晋兵营.循环球式EPS系统助力特性控制策略研究[J].北京理工大学学报,2008(8):702-705,736.
    [12] F.Fukudome. Technical Trends Regarding Electric Components for Electric Power Steering[J]. Koyo Engineering Journal English Edition No.163E(2003).
    [13] Paravila O. Jacob. Design & Safety Considerations for Electrical Power Steering(EPS) Systems Based on Automotive Safety Integrity Levels[J].SAE International, No. 2010-01-0994.
    [14]施国标,林逸,张昕,朱海,王望宇.电动助力转向助力特性的若干问题[J]. SAE-C2003E217.
    [15] Ji-HoonKim,Jae-BokSong. Control logic for an electric power steering system using assist motor[J]. Mechatronics,2002(12):447-459.
    [16] Aly Badawy,Jeff Zuraski,Farhad Bolourchi,Ashok Chandy. Modeling and Analysis of an Electric Power Steering System[J].SAE Paper No. 1999-01-0399.
    [17]陈奎元,马小平,季学武.电动助力转向系统控制技术的研究[J].江苏大学学报(自然科学版),2004(1):21-24.
    [18] Roy McCann.Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System[J].SAE Paper No.2000-01-0817.
    [19] J.S.Chen. Control of Electric Power Steering Systems[J].SAE Paper No.981116.
    [20] Ippei Yamazaki, Ikuo Kushiro, Yoji Kunihiro. Electronic Power Steering Compen- sating Control for Influence of Vehicle Dynamics on Steering Torque[J].SAE Paper No. 2009-01-0049.
    [21]施国标,林逸,陈万忠,邹常丰,潘海鹏.汽车电动助力转向试验台测试系统开发[J].2005(3):23-25.
    [22] Chih-Jung Yeh, Shih-Rung Ho, Ming-Chih Lin, Tsung-Hsien Hu,Tsung-Hua Hsu. Development of a Test Bench for Tuning and Validating Electric Power Steering Control Method[J]. IEEE,2007(7):618-622.
    [23]刘冰.汽车线控转向系统硬件在环试验台研究与开发[D].吉林大学硕士学位论文,2008.
    [24]张光荣.磁粉离合器和磁粉制动器的结构、性能及选用[J].机电工程技术,2004(10):77-79.
    [25]熊建桥,唐小琦,陈吉红.电动助力转向系统仿真测试台设计与实现[J].现代机械,2008(2):21-25.
    [26]翟绍春,阂新和,黄志坚,谭仲毅.汽车电动助力转向装置试验台测控系统的研究与开发[J].机床与液压,2008(12):141-143,157.
    [27]廖抒华,王金波,张宝霞,赵宇.转向系统试验台转向阻力模拟研究现状及发展[J].上海汽车,2009(10):33-35.
    [28]顾兰智,台晓虹,申荣卫.电动助力转向系统硬件在环仿真试验平台设计[J].拖拉机与农用运输车,2007(4):93-95.
    [29]王海洋,陈昕.汽车电动助力转向阻力模拟试验台研究[J].辽宁工学院学报,2005(6):400-402.
    [30]唐岚,刘海泉,陈翀.EPS性能测控系统加载装置的研究[J].中国测试技术,2005(5):19-21,30.
    [31]张利平.液压阀原理、使用与维护[M].化学工业出版社,2005.
    [32]董莉莉,熊经武,万秋华.光电轴角编码器的发展动态[J].光学精密工程,2000(2):198-202.
    [33]杨财,周艳霞.方向盘转角传感器研究进展[J].传感器与微系统,2007(11):1-4.
    [34]贾培起.液压缸[M].北京:北京科学技术出版社,1987.
    [35]冯雪.数据采集卡性能指标与应用[J].工业控制计算机,2008(5):10-11.
    [36]谢晗,吴光强,邱绪云.基于xPC目标的实时仿真技术及实现[J].微计算机信息,2006(12):200-202.
    [37]吴剑,孙秀霞.采用MATLAB中的XPC Target对硬件进行操作[J].现代电子技术,2002(4):59-60.
    [38]李成功,赵昱. Matlab下实现的实时数据采集和处理[J].计算机应用,2002(1):41-43.
    [39]谢晗,吴光强,邱绪云.基于xPC目标的实时仿真技术及实现[J].微计算机信息,2006(12):200-202.
    [40] Roy McCann.Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System[J].SAE Paper No.2000-01-0817.
    [41]李幼德,刘巍,李静,赵健,宋大凤,沙宏亮.汽车稳定性控制系统硬件在环仿真[J].吉林大学学报(工学版),2007(4):737-740.
    [42]郭孔辉,丁海涛,刘溧.汽车ABS混合仿真试验台的开发与研究[J].中国机械工程,2000(12):1417-1421.
    [43]胡建军,李彤,秦大同.基于整车动力学的电动助力转向系统建模仿真[J].系统仿真学报,2008(6):1577-1581.
    [44]郭孔辉,郭青.稳态条件下用于车辆动力学分析的轮胎模型[J].汽车工程, 1998(3):129-134.
    [45]郭孔辉,金凌鸽,卢荡.统一轮胎模型在车辆动力学仿真中的应用[J].吉林大学学报(工学版),2009(2):241-245.
    [46]郭孔辉,袁忠诚,卢荡. UniTire轮胎稳态模型的联合工况预测能力研究[J].汽车工程,2006(6):565-568.
    [47]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [48] I.Camuffo et al. Simulation Tools and Evaluation Criteria for Steering Wheel Feel Improvement of an Electric Power Steering System[J].SAE Paper No.2002-01-1593.
    [49] Meihua Tai, Pushkar Hingwe, Masayoshi Tomizuka. Modeling and Control of Steering System of Heavy Vehicles for Automated High way Systems[J]. IEEE/ASME Transactions on Mechatronics,2004(4):609-618.
    [50]胡康博.电动助力转向系统的建模与仿真研究[D].重庆大学硕士学位论文,2010.
    [51]晋兵营,林逸,施国标.客车循环球式EPS系统建模与助力特性控制策略[J].农业机械学报,2008(7):36-41.
    [52] Xiang Chen ,Xiaoqun Chen. Control-Oriented Model for Electric Power Steering System[J]. SAE Paper No.2006-01-0938.
    [53] Wanzhong Zhao, Guobiao Shi, Yi Lin. Study on Mixed H∞/ H 2Control for Enha- ncing the Tracking Performance of EPS[J].IEEE,2007(7):628-633.
    [54] Pinhas Barak, David-Peter Herczeg, Caleb Hollier, Patrick Recker and Travis Slagle. Mathematical Modeling and Computer Simulation of a Passenger Vehicle Steering System[J]. SAE Paper No. 2004-01-0773.
    [55] Pinhas Barak, David-Peter Herczeg, Caleb Hollier, Patrick Recker ,Travis Slagle. Mathematical Modeling and Computer Simulation of a Passenger Vehicle Steering System. [J]. SAE Paper No. 2004-01-0773.
    [56]陈晓冲,王万平.常规PID控制和模糊自适应PID控制仿真研究[J].机床与液压,2004(12):65-66.
    [57]张恩勤,施颂椒,翁正新.模糊控制与PID控制方法的比较[J].上海交通大学学报,1999(4):501-503.
    [58] Masahiko Kurishige, et al. A Control Strategy to Reduce Steering Torque for Statio- nary Vehicles Equipped with EPS[J]. SAE Paper No. 1999-01-0403.
    [59] Masahiko Kurishige et al.A New EPS Control Strategy to Improve Steering Wheel Returnability[J]. SAE Paper No. 2000-01-0815.
    [60]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [61]王雄波.基于模糊控制的电动助力转向系统的研究与开发[D].湖南大学硕士学位论文,2008.
    [62] Shi Guobiao, Lin Yi,Zhang Xin, Chen Wanzhong,Zhu Hai. Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering [J].SAE Paper No.2004-01-1107.
    [63]程海林,赵武,吴军.基于工控机的汽车转向器扭转性能试验台研制[J].工业控制计算机,2007(3):40-41.
    [64]刘鎏.用Visual C++实现计算机串行通信的几种方法[J].船舶电子工程,2006(1):94-97.
    [65]李朝青.单片机原理及接口技术[M].北京航空航天大学出版社,2005.
    [66]张毅刚.新编MCS-51单片机单片机应用设计[M].哈尔滨工业大学出版社,2008.