用户名: 密码: 验证码:
粒子冲击钻井中流体控制装置的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子冲击钻井技术是一种专门针对深井硬地层的钻井技术,它改变了切削地层的方法,提高了能量的利用率。然而在钻井过程中,钻井液回流问题直接影响到钻头的正常工作。回流的钻井液带着粒子堆积在钻头之上,会损坏钻头,大大缩减钻头的使用寿命,进而增加钻井成本。因此设计一个适用于粒子冲击钻井的流体控制装置是十分必要的。
     本文从粒子冲击钻井的工艺原理及流程研究入手,分析了钻柱内压力分布,为装置的设计及强度校核提供数据支持;并研究了粒子冲击钻井中钻井液回流特性,为下一步流体控制装置设计提供理论支持。结合现有止回阀的工作原理,本着“钻井过程中,当泵工作时,装置处于开启状态,钻井液可以从钻柱通过流体控制装置流向钻头;当泵停止工作时,装置自动进入关闭状态,钻井液不能通过该装置回流”的设计理念,设计出以地面泥浆泵的工作状态为装置开启/闭合条件的流体控制装置。
     应用AutoCAD、Pro/ENGINEER Wildfire等软件对流体控制装置的结构进行了设计,并对装置的关键部件进行了强度校核。通过校核得出,前面对流体控制装置主要结构的设计是可行的。运用Pro/ENGINEER Wildfire软件机构(Mechanism)对设计的结构进行了运动仿真,实现了运动学动力学分析及装配干涉、运动协调性的验证,证明了流体控制装置可以实现以地面泥浆泵的工作状态为装置开启/闭合条件的可行性。在上述研究成果基础上,完成了零件加工图纸以及整体装配图纸的绘制等工作。
Particle impact drilling technology which has changed the traditional way of cutting formation and improved energy efficiency is specially used to hard formation in deep well. However, the back flow of the drilling fluid directly affects the bit life in the drilling process. The particles of the fluid accumulate around the bit, which will damage the drill bit, reduce the service life of drill bit, and then increase the cost of drilling. So it is necessary to design a fluid control device for particle impact drilling.
     In this paper, started with drilling process principle and flow, Solid-liquid two-phase flow equations are set up in the drill string during drilling, and this will be the foundation for analysis of the pressure distribution within the drill string which provide data support for design and strength check of the device. Back flow property is researched which will provide theoretical support to the design of the device. Combining with the working principle of existing check valve, based on the design philosophy that the device is turned on and drilling fluid can pass through the fluid control device when the pump works, and when the pump stop working, the device automatically enters the closed state, so the fluid cannot pass through, design the fluid control device can work on condition of the ground mud pump device’s open /close state.
     Then use softwares such as AutoCAD and Pro/ENGINEER Wildfire to design the structure of fluid control device, meanwhile, check the strength of important components of the device. Through checking the strength, we can see the design of important components is feasible. Through using Pro/ENGINEER Wildfire software sector (Mechanism) to do the mechanism motion simulation, achieve dynamic analysis and verification of assembly interference and motor coordination. Also prove that the fluid control device can work on condition of the ground mud pump device’s open/close state is feasible. On the basis of the results of these studies, all the parts design of the system are completed, such as parts machining drawings, overall assembly drawings, and so on.
引文
[1]伍开松,古剑飞,况雨春,等.粒子冲击钻井技术述评.西南石油大学学报(自然科学版),2004,4,30(2):142-146.
    [2] Veenhuizen S D,Kolle J J,Duda J A.Ultra-high pressure down hole pump for jet-assisted drilling[C].SPE 35111,1996.
    [3] Curlett,Harry B.Axial-vortex jet drilling system and method:United States Patent,5 862871[P].1996.
    [4] Zhang M H.Resistance of high strength concrete to projectile impact[J].International Journal of Impact Engineering,2005,31(7):825-841.
    [5] Harry B.Curlett,David Paul Sharp,Marvin Allen Gregory. FORMATION CUTTING METHOD AND SYSTEM[P]. US6386300B1,2002-05-14
    [6]向文英,李晓红,卢义玉,等.磨料射流破碎岩石的性能研究.地下空间与工程学报,2006,2(1) .
    [7] Curlett H B,Sharp D P,Gregory M A.Formation cutting method and system:United States Patent,6 386 300[P].
    [8] Gordon A.Tibbitt , Greg G.Galloway.Particle drilling alters standard rock-cutting approach[J]. World Oil,June 2008.
    [9]伍开松,荣明,况雨春,等.粒子冲击钻井破岩仿真模拟研究.石油机械,2008,36(2):9-11.
    [10]陆培文,等.实用阀门设计手册[M]. 2版.北京:机械工业出版社,2007.
    [11]陆培文,等.国内外阀门新结构[M]. 2版.北京:中国标准出版社,1997.
    [12]赵金州,张桂林,等.钻井工程技术手册[M].北京:中国石化出版社,2006:404-493.
    [13]陆培文,陆兴华,孙晓霞,等.阀门设计入门与精通.北京:机械工业出版社,2009.7
    [14]中国机械工程学会.螺纹及其联结.北京:中国计划出版社,2004.5
    [15]程军,李虹主编,画法几何及机械设计.北京:国防工业出版社,2005.8
    [16]成大先,王德夫,等.机械设计手册.单行本.润滑与密封.北京:化学工业出版社,2004.1
    [17]成大先,周国庆,张红兵,等.机械设计手册.单行本.轴及其联接.北京:化学工业出版社,2004.1
    [18]苏贵荣.“O型橡胶密封圈材料”标准简介.中国石油和化工标准和质量,1992.08
    [19]徐灏编著.密封.北京:冶金工业出版社,1999
    [20]陈庭根,管志川.钻井工程理论与技术[M].东营:中国石油大学出版社,2000.6
    [21]中国纺织大学机械系手册编写组.机械设计与制造简明手册[M].上海:同济大学出版社,1982:92-185.
    [22]陈达秀,李雅琴.公差与测量技术基础[M].东营:石油大学出版社,1994:132-155.
    [23]李振斌.AutoCAD中公差标注形式及其设置技巧[J].长江工程职业技术学院学报2005,22(3)45-46.
    [24]何秀娟,李德宝.AutoCAD中块的灵活运用[M].北京:机械工业出版社,2005:44-45.
    [25]张曼拓. AutoCAD实用指南[M].北京:机械工业出版社,2000.
    [26]赵虹.韩富跃.提高AutoCAD绘图效率的技巧[J].一重技术2003,98(4);53-55.
    [27]刘佳霓.计算机辅助设计中有关尺寸标注的若干问题[J].中南民族大学学报(自然科学版),2003,22(增刊);28-29.
    [28]郑阿奇.AutoCAD2000中文版实用教程[M].北京:电子工业出版社,2001.
    [29]清源计算机工作室.AutoCAD设计与开发宝典[M].北京:机械工业出版社,1999.
    [30]彭江丰.AutoCAD图形文件标题栏、明细栏的处理[J].船舶2003,3;55-57.
    [31]张祖媛.AutoCAD环境下的尺寸公差自动查询与标注[J].四川工业学院学报2000,19(3)17-19.
    [32]赵九江,张少实,王春香.材料力学[M].哈尔滨:哈尔滨工业大学出版社,1992.
    [33]张少实,张桂莲,等.新编材料力学-2版.北京:机械工业出版社,2009.10
    [34]比尔格尔,绍尔,约西列维奇.机械零件强度计算手册[M].姚兆生,马骥译.北京:机械工业出版社,1987:116-130.
    [35]吕英明,陈海亮,仇伟德.材料力学(Ⅰ) [M].东营:石油大学出版社,2001:77-88.
    [36]高炳军,谢永安.平键联接受力分析及强度校核.河北工业大学学报.2000,15(1). 27-31.
    [37]汪琪.机械零件设计问题解析.中国致公出版社.1993.10:248-320.
    [38]代真,沈士明,丁国铨.金属在固液两相流体中的冲刷腐蚀及其防护.腐蚀科学与防护技术,2007,28(2):86-89.
    [39]郑玉贵,姚治铭,柯伟.流体力学因素对冲刷腐蚀的影响机制[J].腐蚀科学与防护技术, 2000,12 (1):36-40.
    [40]孙江宏,黄小龙,高宏.Pro/ENGINEER Wildfire/2001结构分析与运动仿真[M].北京:中国铁道出版社,2004.
    [41]方建军,刘仕良.机械动态仿真与工程分析- Pro/ENGINEER Wildfire工程应用[M].北京:化学工业出版社,2004.
    [42]林龙震. Pro/ENGINEER Wildfire2.0高级设计[M].第二版.北京:电子工业出版社,2004.
    [43]赵春章.中文版Pro/ENGINEER机械零件设计教程[M].北京:海洋出版社,2004.
    [44]林龙震.Pro/ENGINEER Wildfire2.0基础设计[M].第二版.北京:电子工业出版社,2004.
    [45]雪茗斋电脑教育研究室. Pro/ENGINEER机械设计实例课堂.第1版.北京:人民邮电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700