用户名: 密码: 验证码:
以凝集素为分子识别物质的甘露聚糖电化学发光传感方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖、蛋白质、核酸是涉及生命活动本质的三类重要生物分子。在蛋白组学和基因组学发展的同时,糖组学的研究也日益引起了人们的广泛关注。由单糖、寡糖或多糖与脂类或蛋白质连接形成的糖类物质广泛存在于生命体中,在生命活动过程中具有非常重要的意义。糖类对于生命体不仅仅是简单的能源物质,也是重要的信息分子。糖类参与许多生理和病理过程,与疾病的发生和治疗有着密切的关系。因此糖在生命科学、医学等研究领域中都具有重要的地位。结构多变、功能多样的聚糖几乎覆盖了生物有机体所有的细胞表面,不仅在正常的细胞粘附,细胞间信号转导等方面有重要的作用,而且在细胞病变、病原感染等方面亦具有十分重要的作用。糖与凝集素相互作用的研究及其检测是生化分析中的重要内容,在化学生物学、分子生物学、细胞生物学、药物分析学和环境科学等领域有着十分重要的意义。糖类的检测可为重大疾病的早期诊断、药物筛选以及糖组学的研究等生命科学中的重大研究提供新技术和新方法,对建立高灵敏和高选择性的糖或细胞的测定方法具有重要的作用。
     电化学发光法兼有电化学法和化学发光法的双重优点,具有极低的检测限、极宽的线性范围等优点,因此被广泛应用到免疫分析、DNA杂交检测等领域中。本论文旨在以凝集素伴刀豆球蛋白与甘露聚糖的特异性结合作用为模型,以电化学发光技术为检测手段,建立三种高灵敏检测甘露聚糖的传感方法。本论文构建了一种高灵敏、简单、快速均相电化学发光检测甘露聚糖的新方法,研制了一种通过树枝状高分子多负载电化学发光探针与羧基化单臂碳纳管双重信号增大的甘露聚糖电化学发光糖生物传感器,研制了以Nafion为成膜剂建立电化学发光平台分别实现对不同物质的区分。
     本论文由四章组成。第1章为引言部分,引言对糖和凝集素做了简要的概述,以伴刀豆球蛋白与甘露糖的结合为模型,简要介绍了糖-凝集素相互作用的机理;重点总结了糖-凝集素传感器的研究进展并介绍了树枝状聚酰胺-胺(PAMAM)在生物传感器中的应用,提出了本论文的立题依据、研究目的和研究内容。
     第2章均相电化学发光法测定甘露聚糖。该方法以钌联吡啶络合物为信号物质,以钌联吡啶络合物标记的伴刀豆球蛋白(Con A)为电化学发光探针,以甘露聚糖(Mannan)为目标分子。首先以钌联呲啶络合物标记Con A,制得探针Ru-Con A,当不存在甘露聚糖时,标记探针游离在电极周围,产生强的电化学发光信号;存在甘露聚糖时,与甘露聚糖结合,造成大的空间位阻以及分子量增大的复合物,标记物远离电极,电化学发光强度降低,基于Con A与Mannan结合前后电化学发光强度的变化实现对甘露聚糖的检测。实验中考察了电位、结合时间及探针浓度对发光信号的影响。在选定的实验条件下,电化学发光强度的变化值与目标物甘露聚糖浓度的负对数在1.0×10-10-5.0×10-g mol/L范围内呈良好的线性关系,线性方程为△I=-14751gC-9388(r=0.9979),检出限为6×10-11mol/L。本工作表明利用钌联吡啶络合物标记Con A作为电化学发光探针均相电化学发光检测甘露聚糖具有高灵敏度、简单、快速的优点。
     第3章介绍了我们建立的一种基于树枝状高分子探针电化学发光高灵敏检测甘露聚糖的新方法,首先以羧基化的单臂碳纳米管(SWCNTs)修饰石墨电极表面,将负载有钌联吡啶络合物的聚酰胺-胺树枝状分子(PAMAM-Ru)共价键合于SWCNTs修饰的石墨电极上,最后通过戊二醛交联法固定识别分子Con A。PAMAM在该传感器中起着双重的作用,既可作为信号物质的负载物,又可作为连接臂。该传感器利用羧基化单臂碳纳米管和负载有钌联吡啶衍生物的PAMAM的双重信号增大作用,实现了甘露聚糖的高灵敏检测。与之前检测糖的方法相比,我们构建的新型电化学发光糖生物传感器检测限较低,可以达到4 pmol/L。
     第4章以Nafion为成膜剂,将负载有钌联吡啶衍生物的聚酰胺-胺树枝状分子(PAMAM-Ru)修饰在热裂解石墨电极上,建立了信号非常稳定的电化学发光平台。该平台分别对甘露聚糖和伴刀豆球蛋白具有响应信号,主要以抑制型为主,实现了对不同物质的区分,具有宽的线性范围,高的灵敏度。并对该检测平台的信号响应的抑制机理进行了初步探讨。
     本论文研究了均相、纳米材料/多负载信号增大电化学发光生物传感方法,为分析检测糖类甚至细胞提供了性能优良的分析器件和分析新方法,为电化学发光糖生物传感器的研究提供了一些新思路和基础性研究资料。
Saccharides, protein and nucleic acid are three kinds of molecules concerning life. Glycomics has increasingly attracted our attention with the development of genomics and proteomics. The saccharides connecting with the lipid or protein which exists extensively, play a significant role in biological processes.Saccharide is not only simple energy substance, but also important informational molecules.lt engages in various physiological and pathological processes. It is closely related with the occurrence and treatment of serious deseases. All the cells surfaces of living organisms are almost covered by the variable-structure, rich-function glycans.Those glycans of cell surface play key roles not only in cells recognition,cell adhesion and cell-cell signal transmission,but also in cell diseases and pathogen infections. The saccharides-lectin interaction and detection of them are the important parts of biochemical analysis, which play an impartant role in chemical biology, molecular, cell biology, drug analysis, environmental science and other fields of great importance. New technologies and methods for the detection of saccharides will improve early diagnosis of major diseases, drug screening and glycomics research.It is important to establish highly sensitive and selective methods for the determination of saccharides and cells.
     Electrogenerated chemiluminescence (abbreviated as ECL) method has many distinct advantages over fluorescence method, because it avoids the attendant problems of impurities luminescent and scattered light, and does not involve a light source. Compared to electrochemical method, it has low detection and is less affected by the electrodes pollution. ECL has been widely used in many fields related to biochemical and chemical applications such as immunoassay, food and water testing, DNA hybridization detection as well as explosive material or biowarfare agent detection.
     The aim of the thesis is to develope highly sensitive, convenient and rapid method for the detection of saccharides. The thesis mainly includes two parts. The first part, Chapter 1, is the general introduction while the second part consisting of three chapters, is a research report. In Chapter 1, general introduction to saccharides, lection and saccharides-lectin interaction including their research development, lastly the purpose of this research work was presented.
     In Chapter 2, a novel homogeneous ECL method for the determination of Mannan was developed by employing an ECL probe consisting of Concanavalin A as a recognition molecule and tris (2,2'-bipyridyl) ruthenium derivatives served as an ECL tag. It was found that a strong ECL emission was electrochemically generated at a glassy carbon electrode in a solution of the probe and markedly decreased when target analyte Mannan was added into the probe solution. The changes of ECL intensity has a linear relationship with logarithm of concentration of Mannan in the range from 1.0×10-10 to 5.0×10-8 mol/L and the linear regression equation wasΔI=-9388.3+1475.91gC (unit of C is mol/L, r=0.9979). The detection limit of Mannan was 6×10-11 mol/L.This work demonstrates that a homogeneous ECL model based on the specific interaction between Con A and Mannan is a promising approach to estabilsh simple and sensitive ECL methods for the determination of glucoprotein.It is expected that the developed method is potentially applied in the detection of glycosylation levels or patterns on the cell surfaces.
     In Chapter 3, a novel ECL biosensor for the determination of Mannan is designed based on graphite electrode (GE) modified by polyamidoamine dendrimers(PAMAM,G4.0-NH2) surface-functionalized with polypyridyl ruthenium complexes (PAMAM-Ru) and carboxyl single-wall carbon nanotubes (SWCNTs). A GE was firstly modified with SWCNTs by dropping, and then reacted with an amino-terminated PAMAM-Ru to obtain a thin film. Lastly, the plant lectin Concanavalin A (Con A) was immobilized onto the film to obtain a stable recognition layer by using the classic glutaraldehyde coupling reaction to detect target Mannan. It was found that a strong ECL emission was electrochemically generated at a modified electrode without the target Mannan.An weak ECL signal is generated upon recognition of the target Mannan, which is possiblely attributed to a change electron transport rate in close proximity to the sensor interface. Under the optimum condition, the ECL intensity versus the ligarithm of target Mannan concentration has a good linear relationship in the range from 1.0×10-11 to 5×10-9 mol L-1. The linear regression equation wasΔIECL=12898+1150.91gC(r=0.9963). The detection limit was 4×10-12 molL-1.
     In Chapter 4, an ECL platform was constructed by immobilizing PAMAM-Ru on the surfaces of pyrolytic graphite electrode by Nafion membrane, which has a very stable ECL response. This platform can response to different substances, in a sigal-off model. Using the platform, we successfully develope an ECL method for the discrimination different substances. The signal response mechanism of the platform was tentatively discussed. The method is simple, fast and cheap. It is expected that the developed method is potentially applied for the detection of cells.
引文
[1]G. H. Fleet. Cell walls. In The Yeasts [M],2nd ed. Rose, A. H., Harrison, J. S., Eds.; Academic Press:London, U. K.,1991,4:199-277.
    [2]B. Clinton. Structure and Biosynthesis of the Mannan Component of the Yeast Cell Envelope [J]. Adv. Microb. Physiol.,1976,14:93-158.
    [3]S. L. William, N. Tasuku, B. Clinton E. Biosynthesis of Yeast Mannan: Isolation of Kluyveromyces Lactis Mannan Mutants and a Study of the Incorporation of N-Acetyl-D-Glucosamine into the Polysaccharide Side Chains [J]. J. Biol. Chem.,1975,250 (9):3426-3435.
    [4]Y. Yasuto, N. Eiichiro, M. Harumi. Side-Chain Structure of Cell Surface Polysaccharide, Mannan, Affects Hypocholesterolemic Activity of Yeast [J]. J. Agric. Food Chem.,2009,57 (17):8003-8009.
    [5]D. Mislovicova, J. Masarova, J. Svitel, et al. Influence of mannan epitopes in glycoproteins-Concanavalin A Interaction. Comparison of Natural and Synthetic Glycosylated Proteins [J]. Int.J. Biol. Macromol.,2002,30 (5):251-258.
    [6]M. Vijayan, C. Nagasuma. Lections [J].Struct. Biol.,1999,9 (6):707-714.
    [7]F.Z.Ten. Carbohydrate-Mediated Recognition Systems in Innate Immunity [J]. Rev.,2000,173:79-88.
    [8]Hori K, Matsubaras K, Miyazawa K. Primary Structures of Two Hemagglutinins from the Marine Red Alga [J]. Biochim. Biophys. Acta.,2000,1474 (2): 226-236.
    [9]N.Sharon, L. Halina. Lectins as Cell Recognition Molecules [J]. Science,1989,246(4927):227-234.
    [10]Y. Sato, M. Murakami, K. Miyazawa, et al. Purification and Characterization of Anovel Lectin from a Freshwater Cyanobacterium, Oscillatoria Agardhii. Comp.Biochem [J]. Physiol. B:Biochem. Mol. Biol.,2000,1258 (2):169-177.
    [11]梁峰,常团结.植物凝集素的研究进展[J].武汉大学学报.,2002,48(2):232-238.
    [12]H. Ben-Bassat, Goldblum. N. Proc. Natl. Acad. Sci. U.S.A.,1975,72:1046.
    [13]J. C.Brown, R. C. Hunt. Lectins [J]. Int. Rev. Cytol.,1978,52:277-349.
    [14]P. Stanley. Selection of Lectin-Resistant Mutants of Animal Cells [J]. Methods Enzymol.,1983,96:157-184.
    [15]H. Bittiger, H. P.Schnebli. Concanavalin A as a Tool [M] Eds.; John Wiley and Sons:New York,1976.
    [16]I. J. Goldstein, R. D. Poretz, I. E. Liener, N. Sharon, et al. In The Lectins [M]. Eds.; Academic Press:New York,1986, p35.
    [17]J. Yariv, A. Kalb, L.A.Joseph. The Interaction of Concanavalin A with Methyl A-D-Glucopyranoside [J]. Biochim. Biophys. Acta.,1968,165 (2):303-305.
    [18]S. Menahem, A. Kalb, J. P. Israel. Specificity of Metal Ion Interaction with ConcanavalinA [J]. Biochemistry,1973,12(10):1914-1917.
    [19]A. Varki. Biological Roles of Oligosaccharides:All of the Theories are Correct Glycobiology,1993,3 (2):97-130.
    [20]Y. C. Lee, R. T. Lee. Carbohydrate-Protein Interactions:Basis of Glycobiology [J]. Acc. Chem. Res.,1995,28 (8):321-327.
    [21]P. M. Rudd, T. Elliott, R. A. Dwek, et al. Glycosylation and the Immune System [J]. Science,2001,291 (5512):2370-2376.
    [22]A.Helenius, M. Aebi. Intracellular Functions of N-linked glycans [J]. Science, 2001,29 (5512):2364-2369.
    [23]R. A. Dwek. Glycobiology:Toward Understanding the Function of Sugars [J]. Chem. Rev.,1996,96 (2):683-720.
    [24]张树政(Zhang S Z)糖生物学与糖生物工程(Glycobiologyand Glycobiotechnology)北京:清华大学出版社(Beijing:Tsinghua University Press),2002, pi-6.
    [25]张礼和(Zhang L H),王梅祥(Wang M X)化学生物学进展(Advances in Chemicobiology)北京:化学工业出版社(Beijing:Chemical Industry Press), 2005:101-103.
    [26]Anonymous. Carbohydrate-Protein Interaction [J]. Current topics in microbiology and immunology,1988,139:151-152.
    [27]H. Lis, N.Sharon. Lectins:Carbohydrate-Specific Proteins that Mediate Cellular Recognition [J]. Chem. Rev.,1998,98 (2):637-674.
    [28]M. Ambrosi, N. R. Cameron, B. G. Davis. Lectins:Tools for the Molecular Understanding of the Glycocode [J]. Org. Biomol. Chem.,2005,3 (9):1593-1608.
    [29]M. Sakaguchi, T. Shingo, T. Shimazaki, et al. A Carbohydrate-Binding Protein, Galectin-1, Promotes Proliferation of Adult Neural Stem Cells [J]. Proc. Natl. Acad.Sci. USA.,2006,103 (18):7112-7117.
    [30]M. J. Yim, T. Ono, T. Irimura. Mutated Plant Lectin Library Useful to Identify Different Cells [J]. Proc. Natl. Acad. Sci. USA,2001,98 (5):2222-2225.
    [31]X. L. Mao, Y. Luo, Z. P. Dai Wang, et al. Integrated Lectin Affinity Microfluidic Chip for Glycoform Separation [J]. Anal. Chem.,2004,76 (23): 6941-6947.
    [32]C. P. Swaminathan, N. Surolia, A.Surolia. Role of Water in the Specific Binding of Mannose and Mannooligo Saccharides to Concanavalin A [J]. J. Am. Chem. Soc,1998,120 (21):5153-5159.
    [33]Fernandez Alonso MC, F. J. CaIada, et al. Molecular Recognition of Saccharides by Proteins. Insights on the Origin of the Carbohydrate-Aromatic Interactions [J]. J.Am. Chem. Soc,2005,127 (20):7379-7386.
    [34]Y. C. Lee, R. T. Lee. Carbohydrate-protein Interaction:Basis of Glycobiology [J]. Acc. Chem. Res.,1995,28 (8):321-327.
    [35]R. Kikkerti, I. Garcia Rubio, P.H. Seeberger. Ru (Ⅱ)-Carbohydrate Dendrimers as Photoinduced Electron Transfer Lectin Biosensors [J].Chem.Commun.,2009, 2:235-237.
    [36]R. Kikkerti, F. Kamena, P.H. Seeberger. Ru (Ⅱ) Glycodendrimers as Probes to Study Lectin-carbohydrate Interactions and Electrochemically Measure Monosaccharide and Oligosaccharide Concentration [J]. Langmuir,2010,26 (3): 1520-1523.
    [37]D. Zong, K. Abdel-Nasser, X. Yun, W.Joseph et al. Nanoparticle-Based Sensing of Glycan-lectin Interactions J. Am. Chem. Soc,2006,128 (31):10018-10019.
    [38]L. Ding; C. W. Wang, X. J. Ding, et al. Carbohydrate Monolayer Strategy for Electrochemical Assay of Cell Surface Carbohydrate [J]. J. Am. Chem. Soc, 2008,130 (23):7224-7225.
    [39]F. Li, Y. Feng, B. Tang et al. A Selective Novel Non-enzyme Glucose Amperometric Biosensor Based on Lectin-Sugar Binding on Thionine Modified Electrode [J]. Biosens. Bioelectron.,2011,26:2489-2494.
    [40]K. Sugawara, G. Hirabayashi, N. Kamiya, et al. Evaluation of Concanavalin A-Mannose Interaction on the Electrode Covered with Collagen Film [J]. Talanta.,2006,68 (4):1176-1181.
    [41]K. Sugawara, T. Takayanagi, N. Kamiya, et al. Voltammetric sensing of sugar by an electrode covered with wheat germ agglutinin/chitin film [J]. Talanta, 2007,71 (4):1637-1641.
    [42]K. Sugawara, T. Shirotori, G. Hirabayashi, et al. Voltammetric Evaluation of Lectin-Sugar Binding at A Mannose/Thionine -Modified Au Electrode [J]. J. Electroanal.Chem.,2004,568 (1-2):7-12.
    [43]P. Diego, Q. Nuria, K. Wolfgang, et al. Redox-Active Concanavalin A: Synthesis, Characterization, and Recognition -Driven Assembly of Interfacial Architectures for Bioelectronic Applications [J]. Langmuir,2010,26 (16): 13684-13696.
    [44]W. J. Li, R. Yuan, Y. Q. Chai. Determination of Glucose Using Pseudobienzyme Channeling Based on Sugar-Lectin Biospecific Interactions in a Novel Organic-Inorganic Composite Matrix [J]. J. Phys. Chem. C.,2010,114 (49):21397-21404.
    [45]S. Sergei, J. Lokesh, A. B. Kharitonov, et al. The Use of Impedance Spectroscopy for the Characterization of Protein-Modified ISFET Devices: Application of the Method for the Analysis of Biorecognition Processes [J]. J. Phys. Chem.B.,2001,105 (19):4205-4213.
    [46]B. La, T. Jeffrey, J. Q. Gerlach et al. Label-free Impedimetric Detection of Glycan-Lectin Interactions [J]. Anal. Chem.,2007,79 (18):6959-6964.
    [47]S. Liu, L. Bakovic, A. J. Chen. Specific Binding of Glycoproteins with Poly (Aniline Boronic Acid) Thin Film [J]. Electroanal. Chem.,2006,591 (2): 210-216.
    [48]F. B. Diniz, R. R.Ueta. Platinum Oxidation and its Effect on Concanavalin A Adsorption [J]. Electrochim. Acta.,2004,49 (25):4281-4286.
    [49]姚守拙(Yao S Z)压电化学与生物传感(Piezoelectric Chem Biosensors)[M]长沙:湖南师范大学出版社(Changsha:Hunan Normal University Press) 1997.42-43.
    [50]N. Oscar, L. Q. Deng, M. D. Yan, et al. Photo-Click Immobilization on Quartz Crystal Microbalance Sensors for Selective Carbohydrate-Protein Interaction Analyses [J]. Anal. Chem.,2011,83 (3):1000-1007.
    [51]Y. K. Lyu, K. R. Lim, W. Y. Lee, et al. Microgravimetric lectin biosensor based on signal amplification using carbohydrate-stabilized gold nanoparticles [J].Chem. Commun,2008,39:4771-4773.
    [52]K. S. Carmon, R. E. Baltus, L. A. Luck. A Piezoelectric Quartz Crystal Biosensor:The Use of Two Single Cysteine Mutants of the Periplasmic Escherichia coli Glucose/Galactose Receptor as Target Proteins for the Detection of Glucose [J]. Biochem.,2004,43 (44):14249-14256.
    [53]R. Zahn, S. E. Axmann, K. P. Rvcknaael, et al. Thermodynamic Partitioning Model for Hydrophobic Binding of Polypeptides by Groel. I. Groel Recognizes the Signal Sequences of B-Lactamase Precursor [J]. J. Mol. Bio.,1994,242 (2): 150-164.
    [54]J. Martin, M. Mayhew, T. Langer, F. U. Hartl. The Reaction Cycle of Groel And Groes in Chaperonin-Assisted Protein Folding [J]. Nature,1993,366 (6452): 228-233.
    [55]H. K. Manajit, J.Martin, F. U. Hartl, et al. Asymmetrical Interaction of Groel and Groes in the Atpase Cycle of Assisted Protein Folding [J]. Science,1995, 269 (5225):836-841.
    [56]H. G. Dallmann, R. L. Thimmig, C. S. McHenry. DnaX Complex of Escherichia Coli DNA Polymerase Ⅲ Holoenzyme. Physical Characterization of the Dnax Subunits and Complexes [J]. J. Biol. Chem.,1995,270 (49):29563-29569.
    [57]M. W. Olson, H. G. Dallmann, C. S. McHenry. Dnax Complex of Escherichia Coli DNA Polymerase Ⅲ Holoenzyme. the Xψ Complex Functions by Increasing the Affinity Of T And T for Δ.Δ'To A Physiologically Relevant Range [J]. J. Biol. Chem.,1995,270 (49):29570-29577.
    [58]G. Panayotou, T. Brown, T. Banlow. Direct Measurement of the Substrate Preference of Uracil-DNA Glycosylase [J]. J. Biol. Chem.,1998,273 (1): 45-50.
    [59]I. Babic, S. E. Andrew, F. R. Jiril. MutS Interaction with Mismatch and Alkylated Base Containing DNA Molecules Detected by Optical Biosensor [J]. Mutation Res.,1996,372 (1):87-96.
    [60]M. Corr, A. E. Slanetz, L. F. Boyd, et al. T Cell Receptor-MHC Class I Peptide Interactions:Affinity, Kinetics, and Specificity [J]. Science,1994,265 (5174): 946-949.
    [61]R. Secordel PM, L. G. Zeder, S. J. Plaue. Cross-reactivity of Monoclonal Antibodies To A Chimeric V3 Peptide Of HIV-1 With Peptide Analogs Studied by Biosensor Technology and ELISA [J]. Immunol. Methods,1994,176 (2): 221-234.
    [62]S. M. Alam, G. M. Davies, S. C. Jameson,et al. Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands [J]. Immunity,1999,10:227-237.
    [63]F. Blanchard, L. Dup, S. Raher,et al. Mannose 6-Phosphate/Insulin-Like Growth Factor II Receptor Mediates Internalization and Degradation of Leukemia Inhibitory Factor but Not Signal Transduction [J]. Biol. Chem.,1999,274 (35): 24685-24693.
    [64]T. Anuradha, X. Wang, L.D. M.D.Yan, et al. Photogenerated Carbohydrate Microarrays to Study Carbohydrate-Protein Interactions Using Surface Plasmon Resonance Imaging [J]. Biosens. Bioelectron.,2010,26 (2):344-350.
    [65]E. A. Smith, L. L. Kiessling, R.M. Corn, et al. Surface Plasmon Resonance Imaging Studies of Protein-Carbohydrate Interactions [J]. J. Am. Chem.Soc, 2003,125 (20):6140-6148.
    [66]X. Wang, O. Ramstrom, M. D. Yan. Quantitative Analysis of Multivalent Ligand Presentation on Gold Glyconanoparticles and the Impact on Lectin Binding [J]. Anal. Chem.,2010,82 (21):9082-9089.
    [67]P. H. Liang, S. K. Wang, C. H. Wong. Quantitative Analysis of Carbohydrate-Protein Interactions Using Glycan Microarrays:Determination of Surface and Solution Dissociation Constants [J]. J. Am. Chem. Soc,2007,129 (36):11177-11184.
    [68]R. Kikkeri, D. Grunstein, H. Peter Lectin Biosensing Using Digital Analysis of Ru (II)-Glycodendrimers [J]. J. Am. Chem. Soc,2010,132 (30):10230-10232.
    [69]C. H. Xue, S. P. Jog, H. Liu, et al. Synthesis of Highly Water-Soluble Fluorescent Conjugated Glycopoly (p-phenylene)s for Lectin and Escherichia coli[J]. Biomacromolecule,2006,7 (9):2470-2474.
    [70]L. R. Gu, P. G. Luo, H. F. Wang, et al. Single-Walled Carbon Nanotube as a Unique Scaffold for the Multivalent Display of Sugars [J]. Biomacromolecules, 2008,9 (9):2408-2418.
    [71]O. Rusin, V, Kral, J. O. Escobedo, et al. A Supramolecular Approach to Protein Labeling. A Novel Fluorescent Bioassay for Concanavalin A Activity [J]. Org. Lett,2004,6 (9):1373-1376.
    [72]C. Guo, P. Boullanger, L. Jiang, et al. Highly Sensitive Gold Nanoparticles Biosensor Chips Modified with a Self-assembled Bilayer for Detection of ConA [J]. Biosens. Bioelectron.,2007,22 (8):1830-1834.
    [73]D. J. Revell, J. R. Knight, A. H. Haines, et al. Self-Assembled Carbohydrate Monolayers:Formation and Surface Selective Molecular Recognition [J]. Langmuir,1998,14 (16):4517-4524.
    [74]J. Screen, L. C. Snoek, B. G. Davis, et al. IR-Spectral Signatures of Aromatic-Sugar Complexes:Probe Carbohydrate-Protein Interactions [J].Angew. Chem. Int.Ed.,2007,46 (20):3644-3648.
    [75]E. Han, L. Ding, H. X. Ju et al. Electrochemiluminescent Biosensing of Carbohydrate-Functionalized Cds Nanocompos Ites for in Situ Label-Free Analysis of Cell Surface Carbohydrate [J]. Biosens. Bioelectron.,2011,26 (5): 2500-2505.
    [76]E. Han, L. Ding, H. X. Ju et al. Cytosensing and Dynamic Monitoring of Cell Surface Carbohydrate Expression by Electrochemiluminescence of Quantum Dots [J].Chem. Commun.,2010,46 (30):5446-5448.
    [77]D. A. Tomalia, H. Baker, J. Dewald, et al. A New Class of Polymers:Starburst-Dendritic Macromolecules [J]. Polym J.,1985,17 (1):117-132.
    [78]G. R. Newkome, C. N. Moorefield, F. Vogtle. Dendrimers and Dendrons-Concepts, Syntheses, and Applications [M]. Wein heim:Wiley-VCH,2001.
    [79]A. W. Bosman, H. M. Janssen, E. W. Meijer. About Dendrimers:Structure, Physical Properties, and Applications [J] Chem. Rev.,1999,99 (7):1665-1688.
    [80]S. M. Grayson, Frechet, M. J. Jean Convergent Dendrons and Dendrimers:from Synthesis to Applications [J]. Chem. Rev.,2001,101 (12):3819-3867.
    [81]G. J Li, X, L. Li, J. Wan, S. S. Zhang. Dendrimers-based DNA Biosensors for Highly Sensitive Electrochemical Detection of DNA Hybridization Using Reporter Probe DNA Modified with Au Nanoparticles [J]. Biosens. Bioelectron., 2009,24 (11):3281-3287.
    [82]G. Jie, L. Wang, J. Yuan, S. S. Zhang.Versatile Electrochemiluminescence Assays for Cancer Cells Based on Dendrimer/CdSe-ZnS-Quantum Dot Nanoclusters [J]. Anal Chem.,2011,83 (10):3873-3880.
    [83]N. N. Zhu, H. Gao, Q. Xu, L. Q. Mao et al. Sensitive Impedimetric DNA Biosensor with Poly (Amidoamine) Dendrimer Covalently Attached onto Carbon Nanotube Electronic Transducers as the Tether for Surface Confinement of Probe DNA[J]. Biosens Bioelectron.,2010,25 (6):1498-503.
    [84]Q. Zheng, H. J. Bai, G. L. Wang, J. J. Xu, H. Y. Chen. A Photoelectrochemical Sensor Based on Cds-Polyamidoamine Nano-Composite Film for Cell Capture And Detection [J]. Biosens. Bioelectron.,2010,25 (9):2045-2050.
    [85]X. C. Zhou, C. Turchi, D. N. Wang. Carbohydrate Cluster Microarrays Fabricated on Three-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration [J]. J. Proteome. Res.,2009,8 (11):5031-5040.
    [86]T. Hermann, D. J. Patel. Adaptive Recognition by Nucleic Acid Aptamers [J]. Science,2000,287 (5454):820-825.
    [87]K. Raghavendra, G. Seeberger, H. Peter. Ru(Ⅱ)-carbohydrate Dendrimers as Photoinduced Electron Transfer Lectin Biosensors[J]. Chem.Commun.,2009,2: 235-237.
    [88]R. Kikkeri, F. Kamena,T. Gupta,et al.Ru(II) Glycodendrimers as Probes to Study Lectin-carbohydrate Interactions and Electrochemically Measure Monosaccharide and Oligosaccharide Concentrations[J]. Langmuir,2010,26 (3): 1520-1523.
    [89]J. Q. Gao, D. J. Liu, Z. X. Wang.Microarray-Based Study of Carbohydrate-Protein Binding by Gold Nanoparticle Probes [J]. Anal. Chem., 2008,80 (22):8822-8827.
    [90]H. L. Qi, Y. G. Peng, Q. Gao, et al. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors [J]. Sensors,2009,9 (1): 674-695.
    [91]P. F. Bertoncello, J. Robert. Nanostructured Materials for Electrochemiluminescence (ECL)-based Detection Methods:Recent Advances and Future Perspectives [J]. Biosens. Bioelectron.,2009,24 (11):3191-3200.
    [92]W. J. Miao. Electrogenerated Chemiluminescence and Its Biorelated Applications [J]. Chem. Rev.,2008,108 (7):2506-2553.
    [93]E. Terpetschnig, H. Szmacinski, H. Malak, J. R. Lakkowicz. Metal-Ligand Complexes as a New Class of Long-Lived Fluorophores for Protein Hydrodynamics [J]. Biophysical Journal,1995,68 (1):342-350.
    [94]T. Shimdzu, T. Iyoda, K. Izaki. Photoelectrochemical Properties of Bis (2, 2'-bipyridine) (4,4'-dicarboxy-2,2'-bipyridine) Ruthenium (Ⅱ) chloride [J]. J. Phys. Chem.,1985,89:642-645.
    [95]D. Ege, W. G. Becker, A. J. Bard. Electrogenerated Chemiluminescent Determination of Tris (2,2'-bipyridine) ruthenium ion (Ru(bpy)32+) at Low Levels [J]. Anal. Chem.,1984,56 (13):2413-2417.
    [96]A. J. Bard, G. M. Whitesides.U.S.Patent 5[P],1993,221,605.
    [97]E. J. Nakata, K. Erina, K.Yoshiki, et al. Double-Modification of Lectin Using Two Distinct Chemistriesfor Fluorescent Ratiometric Sensing and Imaging Saccharides in Test Tube or in Cell [J]. J. Am. Chem. Soc,2005,127 (38): 13253-13261.
    [98]T. Hiraishi, T. Kamachi, I. Okura. Photoinduced Hydrogen Evolution with Viologen-linked Ruthenium (Ⅱ) Complexes and Hydrogenase [J]. J. Mol. Catal. A:Chem.,1999,138 (2-3):107-113.
    [99]T. Liu, W. J. Ruan, J. Nan. CD Spectroscopic Study on the Molecular Recognition of Chiral Salen-Metal Complexes [J]. Chin. J. Chem.,2003,21 (7): 751-755.
    [100]M. S. Herrmann, C. E.Richardson, L. M.Setzler, et al. A Circular Dichroic Investigation of the Secondary Structure of Lectins [J]. Biopolymers,1978,17 (9):2107-2120.
    [101]M. Amidi, H. C. Pellikaan, D. J. Crommelin, et al. Preparation and Physicochemical Characterization of Supercritically Dried Insulin-Loaded Microparticles for Pulmonary Delivery [J]. Eur. J. Pharm. Biopharm.,2008,68 (2):191-200.
    [102]J. Murali, R. Jayakumar. Spectroscopic Studies on Native and Protofibrillar Insulin [J]. J. Struct Biol.,2005,150 (2):180-189.
    [103]R. X. Yin, K. M. Wang, J. Han, et al. Photo-crosslinked Glucose-Sensitive Hydrogels based on Methacrylate Modified Dextran-Concanavalin A and PEG Dimethacrylate [J]. Carbohydrate Polymers.,2010,82:412-418.
    [104]C. Tuerk, L. Gold. Systematic Evolution of Ligands by Exponential Enrichment:RNA Ligands to Bacteriophage T4 DNA Polymerase [J]. Science, 1990,249 (4968):505-510.
    [105]A. E. Ellington, J. W. Szostak. In Vitro Selection of RNA Molecules that Bind Specific Ligands [J]. Nature,1990,346 (6287):818-822.
    [106]D. L. Robertson, G. F. Joyce. Selection in Vitro of an RNA Enzyme that Specifically Cleaves Single-stranded DNA [J]. Nature,1990,44 (6265): 467-468.
    [107]J. W. Liu, Z. H. Cao, Y. Lu. Functional Nucleic Acid Sensors [J]. Chem.Rev., 2009,109(5):1948-1998.
    [108]A. J. Bard. Electrogenerated Chemiluminescence [M]. Marcel Dekker, Inc.: New York,2004.
    [109]A. J. Bard, L. R. Faulkner. Electochemical Methods [M]. Wiley:New York, 2001:39-41.
    [110]W. Joseph Analytical electrochemistry [M]. Wiley:New York,2006:29-69.
    [111]F. Scholz. Electroanalytical Methods:Guide to Experiments and Applications [M].2nd ed.Springer-Verlag Berlin Heidelberg,2010.
    [112]V. S. Bagotsky, Fundamentals of Electrochemistry [M]. Wiley:New York, 2006.
    [113]C. A. Parker. Photoluminescence of Solutions [M]. Elsevier:Amsterdam,1968.
    [114]J. B. Birks. Photophysics of Aromatic Molecules [M]. Wiley-Interscience:New York,1970.
    [115]J. R. Lakowicz. Principles of Fluorescence Spectroscopy [M]. Springer-Verlag Berlin Heidelberg,2010.
    [116]C. X. Deng, J. H. Chen, N. Zhou, et al. Impedimetric Aptasensor with Femtomolar Sensitivity Basedon the Enlargement of Surface-charged Gold Nanoparticles [J]. Anal. Chem.,2009,81 (2):739-745.
    [117]L.Wang, N. Zhou, X. H. Xu, et al. A Sensitive, Label Free Electrochemical Aptasensor for ATP Detection [J]. Talanta,2009,78 (3):954-958.
    [118]D. R. Thevenot, K. Toth, R. A. Durst, et al. Electrochemical Biosensors: Recommended Definitions and Classification [J]. Biosens. Bioelectron.,2001, 16(1-2):121-131.
    [119]H. L. Qi, Y. G. Peng, Q. Gao, et al. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors [J]. Sensors,2009,9 (1): 674-695.
    [120]P. H. Seeberger, D. B. Werz. Automated Synthesis of Oligosaccharides as a Basis for Drug Discovery [J]. Nat. Rev.,2005,4 (9):751-763.
    [121]M. Vijayan, N. Chandra. Lectins [J]. Curr. Opin. Struct. Biol.,1999,9 (6): 707-714.
    [122]F. Zeng, S. C. Zimmerman. Dendrimers in Supramolecular Chemistry:from Molecular Recognition to Self-assembly [J]. Chem. Rev.,1997,97 (5): 1681-1712.
    [123]W. Koch, B. Liu, D. J. DeFrees, D. E. Sunko, et al. Experimental and Theoretical IR Spectra of the 2-norbornyl Cation [J]. Angew. Chem. Int. Ed., 1990,29(2):182-185.
    [124]J. M. Frechet. Functional Polymers and Dendrimers:Reactivity, Molecular Architecture, and Interfacial Energy [J]. Science,1994,263 (5154):1710-1715.
    [125]C. C. Huang, C. T. Chen, Y. C. Shiang, et al. Synthesis of Fluorescent Carbohydrate-protected Au Danodots for Detection of Concanavalin A and Escherichia coli[J]. Anal Chem.,2009,81 (3):875-882.
    [126]A. R. de Boer, C.H. Hokke, A. M. Deelder, et al. General Microarray Technique for Immobilization and Screening of Natural Glycans [J]. Anal Chem.,2007,79 (21):8107-8113.
    [127]J. Q. Gao, D. J. Liu, Z. X. Wang. Microarray-based Study of Carbohydrate-Protein Binding by Gold Nanoparticle Probes [J]. Anal. Chem., 2008,80 (22):8822-8827.
    [128]R. Ballerstadt, J. S. Schultz. A Fluorescence Affinity Hollow Fiber Sensor for Continuous Transdermal Glucose Monitoring [J]. Anal. Chem.,2000,72 (17): 4185-4192.
    [129]S. A. Asher, V. L. Alexeev, A. V. Goponenko, et al. Photonic Crystal Carbohydrate Sensors:Low Ionic Strength Sugar Sensing [J]. J. Am. Chem. Soc,2003,125 (11):3322-3329.
    [130]W. J. Li, R. Yuan, Y. Q. Chai. Determination of Glucose Using Pseudobienzyme Channeling Based on Sugar-Lectin Biospecific Interactions in a Novel Organic-Inorganic Composite Matrix [J]. J. Phys. Chem. C.,2010,114 (49):21397-21404.
    [131]Y. Y. Wang, C. Srinivas, T. Li, et al.Multivalent Interaction-based Carbohydrate Biosensors for Signal Amplification [J]. Biosens Bioelectron., 2010,26 (3):996-1001.
    [132]R. Kikkeri, F. Kamena, T. Gupta, L. H. Hossain, et al. Ru (Ⅱ) Glycodendrimers as Probes to Study Lectin-carbohydrate Interactions and Electrochemically Measure Monosaccharide and Oligosaccharide Concentrations [J]. Langmuir, 2010,26(3):1520-1523.
    [133]N. E. Tokel, A. J. Bard. Electrogenerated chemiluminescence. IX. Electrochemistry and Emission from Systems Containing tris (2,2'-bipyridine) ruthenium(Ⅱ) Dichloride [J]. J. Am. Chem. Soc,1972,94(8):2862-2863.
    [134]I. Rubinstein, A. J. Bard. Polymer films on electrodes.5. Electrochemistry and chemiluminescence at Nafion-coated electrodes [J]. J. Am. Chem. Soc, 1981,103 (17):5007-5013.
    [135]K. Kalyanasunderan.Photochemistry of Polypyridine and Porphyrin Complexes [M], Academic Press, London, UK,1991.
    [136]J. P. Sauvage, J. P. Collin, J.C.Chaimborn, et al. Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties [J]. Chem. Rev.,1994,94:993-1019.
    [137]G. D. Storrier, K. Takada, H. D. Abruna. Synthesis, Characterization, Electrochemistry, and EQCM Studies of Polyamidoamine Dendrimers Surface-Functionalized with Polypyridyl Metal Complexes [J]. Langmuir.,1999, 15 (3):872-884.
    [138]D. N. Lee, J. K. Kim, H. S. Park, et al. Polyamidoamine Dendrimers Functionalized with Electrochemiluminescent Polypyridyl Ru(II) Complexes [J]. Synthetic Metals.,2005,150 (1):93-100.
    [139]H. Zheng, Y. Zu. Emission of tris (2,2'-bipyridine) ruthenium (II) by Coreactant Electrogenerated Chemiluminescence:from O2-insensitive to Highly O2-sensitive [J]. J. Phys. Chem. B.,2005,09 (24):12049-12053.
    [140]Y. Li, H. L. Qi, Y. Peng, J. Yang, C. X. Zhang. Electrogenerated Chemiluminescence Aptamer-Based Biosensor for the Determination of Cocaine [J]. Electrochem. Commun.,2007,9 (10):2571-2575.
    [141]I. Rubinstein, A. J. Bard. Polymer films on electrodes.4. Nafion-coated Electrodes and Electrogenerated Chemiluminescence of Surface-Attached Tris (2,2'-bipyridine) ruthenium (2+) [J]. J. Am. Chem. Soc,1980,102 (21): 6641-6642.
    [142]I. Rubinstein, A. J. Bard. Polymer films on electrodes.5. Electrochemistry and chemiluminescence at Nafion-coated electrodes [J] J. Am. Chem. Soc, 1981,103 (17):5007-5013.
    [143]C. R. Martin, I. Rubinstein, A. J. Bard. Polymer films on electrodes.9. Electron and mass transfer in Nafion films containing tris (2,2'-bipyridine)ruthenium(2+) [J]. J. Am. Chem. Soc,1982,104 (18):4817-4824.
    [144]D. A. Buttry, F. C. Anson.Electrochemical Control of the Luminescent Lifetime of Ru(bpy)32+ incorporated in Nafion Films on Graphite Electrodes [J]. J. Am. Chem. Soc,1982,104 (18):4824-4829.
    [145]T. M. Downey, T. A. Nieman. Chemiluminescence Detection Using Regenerable tris (2,2'-bipyridyl) ruthenium (Ⅱ) Immobilized in Nafion [J] Anal. Chem.,1992,64 (3):261-268.
    [146]P. Bertoncello, L. Dennany, R. J. Forster, et al. Nafion-Tris (2-2'-bipyridyl) ruthenium (Ⅱ) Ultrathin Langmuir-Schaefer Films:Redox Catalysis and Electrochemiluminescent Properties [J]. Anal. Chem.,2007,79 (19): 7549-7553.
    [147]W. J. Miao, A. J. Bard. Electrogenerated Chemiluminescence.77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres [J]. Anal. Chem.,2004,76 (18):5379-5386.
    [148]J. G. Fan, F. R. Pan, S.L. Lynch,et al. Spontaneous Formation and Electrogenerated Chemiluminescence of Tris (bipyridine) Ru(Ⅱ) Derivative Nanobelts [J]. J. Am. Chem. Soc,008,130 (23):7196-7197.
    [149]L. H. Zhang, S. J. Dong. Electrogenerated Chemiluminescence Sensors Using Ru(bpy)32+ Doped in Silica Nanoparticles [J]. Anal. Chem.,2006,78 (14): 5119-5123.
    [150]Z. H. Guo, S. J. Dong. Electrogenerated Chemiluminescence from Ru(Bpy)32+ Ion-Exchanged in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films [J]. Anal. Chem.,2004,76 (10):2683-2688.
    [151]M. M. Collinson, J. Taussig, S. A. Martin. Solid-State Electrogenerated Chemiluminescence from Gel-Entrapped Ruthenium (Ⅱ) Tris (bipyridine) and Tripropylamine [J]. Chem. Mater.,1999,11 (9):2594-2599.
    [152]M. M. Collinson, B. Novak, S. A. Martin, et al. Electrochemiluminescence of Ruthenium (Ⅱ) Tris (bipyridine) Encapsulated in Sol-Gel Glasses [J]. Anal. Chem.,2000,72 (13):914-2918.
    [153]W. Wang, T. Xiong, H. Cui.Fluorescence and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles:Photostability and Platform Effect [J]. Langmuir,2008,24 (6):2826-2833.
    [154]K. Hool, T. A. Nieman. Immobilized Luminol Chemiluminescence Reagent System for Hydrogen Peroxide Determinations in Flowing Streams [J]. Anal. Chem.,1988,60 (9):834-837.
    [155]S. K. Poznyak, D. V. Talapin, E. V. Shevchenko, et al. Quantum Dot Chemiluminescence [J]. Nano Lett.,2004,4(4):693-698.
    [156]G. Z. Zou, H. X. Ju. Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution [J]. Anal. Chem.,2004,76(23):6871-6876.
    [157]D. Jie, E. A. Arriaga, Simultaneous Laser-induced Fluorescence and Scattering Detection of Individual Particles Separated by Capillary Electrophoresis [J] Anal. Chem.,2007,79 (14):5474-5478.
    [158]G. F. Jie, J. J. Zhang, D. C. Wang, et al. Electrochemiluminescence Immunosensor based on CdSe Nanocomposites [J]. Anal. Chem.,2008,80 (11): 4033-4039.
    [159]D. B. Zhu, Y. B. Tang, D. Xing, et al. PCR-free Quantitative Detection of Genetically Modified Organism from Raw Materials An Electrochemiluminescence-based Biobar Code Method [J]. Anal. Chem.,2008, 80 (10):3566-3571.
    [160]T. M. Downey, T. A. Nieman. Chemiluminescence Detection Using Regenerable Tris (2,2'-bipyridyl)ruthenium(II) Immobilized in Nafion Anal.Chem.,1992,64 (3):261-268.
    [161]H. N. Choi, S. H. Cho, W. Y. Lee. Electrogenerated Chemiluminescence from Tris (2,2'-bispyridyl)ruthenium(II) Immobilized in Titania-Perfuorosulfonated Ionomer Composite Films [J]. Anal. Chem.,2003,75 (16):4250-4256.
    [162]H. J. Song, Z. J. Zhang, F. Wang. Electrchemiluminescent Detemination of Chlorphenamine Maleate Based on Ru (bpy) 32+ Immobilized in a Nano-Titania/Nafion Membrane [J]. Electroanalysis,2006,18:1838-1841.
    [163]L. H. Zhang, Z. A. Xu, S. J. Dong. Electrogenerated Chemiluminescence Biosensor based on Ru(bpy)32+ and Dehydrogenase Immonilized In sol-gel/Chitosan/Poly(sodium 4-styrene sulfonate) Composite Material [J]. Analytica Chimica Acta.,2006,575 (1):52-56.
    [164]S. N. Ding, J. J. Xu, H. Y. Chen. Tris (2,2'-bispyridyl) ruthenium (II)-zirconia-Nafion Composite Films Applied a Solid-state Electrochemiluminescence Detector for Capillary Electrophoresis [J]. Electrophoresis,2005,26 (9):1737-1744.
    [165]S. N. Ding, J. J. Xu, W. J. Zhang, H. Y. Chen. Tris (2,2-bipyridyl) Ruthenium(Ⅱ)-Zirconia-Nafion Composite Modified Electrode Applied As Solid-State Electrochemiluminescence Detector Electrophoretic Microchip for Detection of Pharmaceuticals of Tramadol, Lidocaine and Ofloxacin [J]. Talanta, 2006,70 (3):572-577.
    [166]D. Tomalia, H. Baker, J. Dewald, et al. A New Class of Polymers:Starburst-Dendritic Macromolecules [J]. Polym. J.,1985,17 (1):117-132.
    [167]A. W. Bosman, H. M. Janssen, E. W. Meijer. About Dendrimers:Structure, Physical Properties, and Applications [J]. Chem. Rev.,1999,99 (7):1665-1688.
    [168]S. M. Grayson, Frechet, M. J. Jean. Convergent Dendrons and Dendrimers: from Synthesis to Applications [J]. Chem. Rev.,2001,101 (12):3819-3867.
    [169]D. S. Gregory, T. Kazutake, H. D. Abruna. Synthesis, Characterization, Electrochemistry, and EQCM Studies of Polyamidoamine DendrimersSurface-Functionalized with Polypyridyl Metal Complexes [J]. Langmuir,1999,15 (3):872-884.
    [170]N. L. Do, K. K. Jung, S. P. Hee, et al.Polyamidoamine Dendrimers Dunctionalized with Electrochemiluminescent Polypyridyl Ru (Ⅱ) Complexes [J]. Synth. Met,2005,150 (1):93-100.
    [171]B. Paolo, D. Lynn, J. F.Robert,et al. Nafion-Tris (2-20-bipyridyl) ruthenium (Ⅱ) Ultrathin Langmuir-Schaefer Films:Redox Catalysis and Electrochemiluminescent Properties [J]. Anal. Chem.,2007,79 (19): 7549-7553.
    [172]A. O. George, G. K. Suryahakash, A. Massoud. Polymer Films on Electrodes.4. Nafion-Coated Electrodes and Electrogenerated Chemiluminescence of Surface-Attached Ru(bpy)32+[J]. J. Am. Chem. Soc,1980,102 (21): 6641-6642.
    [173]L.Y. Zheng, Y. W. Chi, Q. Q. Shu, et al. Electrochemiluminescent Reaction between Ru(bpy)32+ and Oxygen in Nafion Film [J]. J. Phys. Chem. C.,2009, 113 (47):20316-20321.
    [174]E. Guibal, T. Vincent, J. M. Tobin, et al. Sulfur Derivatives of Chitosan for Palladium Sorption [J]. React Funct Polym.,2002,50 (2):149-163.
    [175]Y. Baba, H. Noma, R. Nakayama,et al. Preparation of Chitosan Derivatives Containing Methylthiocarbamoyl and Phenylthiocarbamoyl Groups and Their Selective Adsorption of Copper (Ⅱ) over Iron (Ⅲ) [J]. Anal Sci,2002,18 (3): 359-361.
    [176]C. X. Lei, S. Q. Hu, G. L. Shen, et al. Immobilization of Horseradish Peroxidase to a Nano-Au Monolayer Modified Chitosan-Entrapped Carbon Paste Electrode for the Detection of Hydrogen Peroxide [J]. Talanta,2003,59 (5):981-988.
    [177]J. J. Feng, G. Zhao, J. J. Xu, et al. Direct Electrochemistry and Electrocatalysis of Heme Proteins Immobilized on Gold Nanoparticles Stabilized by Chitosan [J]. Anal. Biochem.,2005,342 (2):280-286.
    [178]J. B. Sumner, S. F.Howell.The Identification of the Hemagglutinin of the Jack Bean with Concanavalin A [J]. J. Bacteriol.,1936,32 (2):227-237.
    [179]R. Kadirvelraj, B. L.Foley, J. D. Dyekjer, et al.Woods Involvement of Water in Carbohydrate-Protein Binding:Concanavalin A Revisited [J]. J.Am.Chem.Soc, 2008,130(50):16933-16942.
    [180]A. Lehmani, S. Durand-Vidal, P. Turq. Surface Morphology of Nafion 117 Membrane by Tapping Mode Atomic Force Microscope [J]. J. Appl. Polym. Sci.,1998,68 (3):503-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700