土生空团菌的培养特性及其对宿主植物促生作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对分离自不同宿主植物和不同部位的5株(CgSO1、CgSB2、CgO5、CgSPOP2和Cg5#)土生空团菌(Cenococcum geophilum Fr.. Cg)进行了最优扩繁条件及其对宿主虎榛子和油松的促生作用的研究。通过单因素试验、正交试验和液体培养验证试验对5株菌株进行了培养特性的研究,并通过室内试验对5株Cg对虎榛子和油松的促生作用进行了研究。
     本研究取得了以下结果:
     1、采用平板培养法对5菌株的最适培养基进行了初筛,并对5菌株培养特性进行研究,并采用液体摇瓶培养方法对优化结果进行了验证。结果表明,不同来源的五株Cg在培养特性上存在一定差异,除最适温度无差异外,最适pH值、碳氮源、微量元素、无机盐以及维生素都不相同;培养基经优化后,5菌株的菌丝产量均有很大提高,CgSO1、CgSB2、CgO5、CgSPOP2和Cg5#菌株的单菌落菌丝生物量分别达到0.0643g、0.0853g、0.0985g、0.0659g和0.0891g;在液体摇瓶验证试验中,5菌株菌丝产量分别达到了13.189g/L、12.413g/L、18.852g/ L、11.511g/L和14.179 g/L,均达到了液体发酵生产要求。验证试验结果表明,液体摇瓶试验的结果固体平板试验的结果是十分吻合的。
     2、来源不同的5菌株除来自法国的Cg5#外,其中CgSO1、CgSB2、CgO5和CgSPOP2对虎榛子幼苗的感染率分别为43.5%、46.8%、49.2%和48.1%,均达到了四级侵染率;而只有CgSO1和CgSPOP2油松形成了菌根,而且感染率仅为10.3%和12.4%。接种Cg后,虎榛子菌根苗比对照苗的苗高提高了49.6%-65.9%,地茎提高了14.9%-21.9%,一级侧根数提高了21.7%-34.8%,地上干重提高了51%-69.9%;地下干重提高了108-135.5%,总干重提高了71.8%-88.3%,根冠比提高了27.1%-46%,相对含水量提高了4.9%-8.5%;接种Cg后,油松的菌根苗苗高提高了7.6%-8.6%,地茎提高了10.5%-11.8%,一级侧根数分别提高了12.5%-18.8%,地下干重提高了31.8%-32.9%,总干重提高了16.6%-16.8%,根冠比提高了20.7%-22%。这些结果表明,接种Cg菌株并形成菌根后,可以显著促进宿主苗木的生长,尤其是促进宿主的地下生物量和根冠比的增加。
The best propagation conditions and the Growth-promoting on Ostryopsis davidiana and pinus tabulaeformis of the five strains of Cenococcum geophilum (CgSO1, CgSB2, CgO5, CgSPOP2 and Cg5#) was studied in this paper. The single-factor tests, orthogonal tests and liquid confirmatory test were used to research the cultuer characteristics of the 5 Cg strains. The growth-promoting on O. davidiana and P. tabulaeformis of the 5 Cg strains were studied.
     The main results were following:
     (1) The optimized culturing conditions of 5 Cg strains were determined separately. The results showed that the 5 Cg strains had different nutrition physiological characteristics. The optimum pH, carbon source, nitrogen source, microelements components, mineral salt components, vitamin requirement were different excepted the optimum temperature; The biomass of the 5 Cg strains were increased significantly. The monoclony biomass of 5 Cg strains were 0.0643g, 0.0853g, 0.0985g, 0.0659g and 0.0891g; The results of the corresponding liquid cultivation were 13.189 g/L, 12.413 g/L, 18.852 g/, 11.511 g/L and 14.179 g/L.
     (2) The results showed that the infection rates of the 4 Cg stains?(CgSO1, CgSB2, CgO5 and CgSPOP2) on the O.davidiana were 43.5%, 46.8%, 49.2% and 48.1% respectively. However, there were only CgSO1 and CgSPOP2 which could form the mycorrhiza structure with P.tabulaeformis, and the infection rates were just 10.3% and 12.4%. After inoculating Cg, the heights of mycorrhizal seedling of O.davidiana were 49.6% to 65.9% higher than the control. The ground diameters were increased by 14.9% to 21.9%. The first grade lateral roots were increased by 21.7% to 34.8%. The shoots dry weights were raised by 51% to 69.9%. The roots dry weights were raised by 108% to 135.5%. The total dry weight was raised by 71.8% to 88.3%. The root/shoot ratios were increased by 27.1% to 46%. The relative water contents were increased by 4.9% to 8.5%. The height of mycorrhizal seedlings of P.tabulaeformis was promoted 7.6% to 8.6%, the ground diameter was promoted 10.5% to 11.8%. The first grade lateral roots were increased by 12.5% to 18.8%. The roots dry weight was raised by 31.8% to 32.9%. The total dry weights were raised by 16.6% to 16.8%. The root/shoot ratios were increased 20.7% to 22%. All of the results manifested that after inoculated Cg, the growth of host plants were improved definitely.
引文
1杨艳.外生菌根真菌提高油松抗旱性的研究[D].西北农林科技大学, 2010.
    2梁宇,郭良栋,马克.菌根真菌在生态系统中的作用[J].植物生态学报, 2002, 26(6):739-745.
    3吴子龙,赵昕.混合接种菌根真菌对喜树幼苗生长及喜树碱含量的影响[J].北方园艺, 2009(10):52-54.
    4迟丽华.吉林省野生果树菌根的调查研究[D].吉林农业大学, 2003.
    5刘润进,陈应龙.菌根学[M].北京:科学出版社, 2007.
    6 Isaac, S. Fungal-plant interactions[M]. Chapman&Hall, Cambridge, UK. 1992.
    7 Smith S. E. & Read D. Mycorrhizal symbiosis 3rd ed. London: Academic Press,2008.
    8弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997.
    9王成彬,林久志.中国外生菌根资源的研究进展展望[J].中国林副特产. 2006. 83(4): 105-106.
    10胡弘道.林木菌根[M].北京:中华出版公司, 1990.
    11王斐,琚淑明.松科树种菌根的研究进展[J]. 2010, 38(10):92-95.
    12花晓梅.菌根概论.林木菌根研究.北京:中国科学技术出版社,1995. 1-20.
    13杨国亭,宋关玲,高兴喜.外生菌根在森林生态系统中的重要性. (Ⅰ)-外生菌根对宿主树木的影响.东北林业大学学报. 1999. 27(6):72-77.
    14白淑兰.内蒙古大青山外生菌根真菌分布筛选的研究[D].北京林业大学, 2006.
    15于富强,刘培贵.外生菌根研究及展望[J].生态学报, 2002, 22(12):2217-2225.
    16 Li XL, Christie P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 2001, 42(2):201-207.
    17 Cairney, J., Burke, R.. Fungal enzymes degrading plant cell walls: their possible significance in the ectomycorrhizal symbiosis [J]. Mycological Research, 1994, 98:1345-1356.
    18卢丽君,白淑兰,王静,王铁牛.外生菌根合成的条件及形成机制[J].微生物学杂志, 2005, 25(2):84-87.
    19 Martin, F., Tagu, D.. Ectomycorrhiza development:A molecular perspective[J]. Springer-Verlag, Berlin. ISBN 3-540-58525-7.
    20 Baum C, Weih M, Verwijst T, et al. The effects of nitrogen fertilization and soil properties on mycorrhizal formation of Salix viminalis[J]. Forest Ecology and Management, 2002, 160:35-43.
    21 Martin, F., Laurent, P.. Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius:identification, function, and expression in symbiosis[J]. Fungal Genet. Biol, 1999, 27:161-174.
    22曾丽琼.几种优良外生菌根菌的应用和胶丸菌剂的制备[D].南京林业大学, 2010.
    23 Kottke, I.. Fungal adhesion pad formation and penetration of root cuticle in early stage mycorrhizas of Picea abies and Laccaria amethystea [J]. Protoplasma, 1997, 196:55-64.
    24 Smith, S., Read, D. Mycorrhizal symbiosis. Academic Press. 1997, ISBN 0-12-652840-3.
    25 Bonfante, P., Balestrini, R.. Morphological analysis of early contacts between pine roots and two ectomycorrhizal Suillus strains[J]. Mycorrhiza, 1998, 8:1-10.
    26 Sharron CRANE, John DIGHTON, Tamar BARKAY. Growth responses to and accumulation of mercury by ctomycorrhizal fungi[J]. Fungal biology, 2010, 114:873-880.
    27 Laurent, P., Voiblet, C.. A novel class of ectomycorrhiza-regulated cell wall poly-peptides in Pisolithus tinctorius [J]. Plant Microbe Interact. 1999, 12:862-871.
    28 Burgess, T., Laurent, P.. Effect of fungal-isolate aggressivity on the biosynthesis of symbiosis-related polypeptides in differentiating eucalypt ectomycorrhiza [J]. Planta, 1995, 195:408-417.
    29 Mark C. Brundrett. Coevolution of roots and mycorrhizal of land plants[J]. New Phytol. 2002, 154:275-304.
    30马大龙.赤松幼苗外生菌根形态学研究[D].东北林业大学. 2008.
    31马大龙,杨国亭,穆立蔷.赤松幼苗外生菌根的形态特征[J].东北林业大学学报, 2008, 36(4):35-44.
    32邢树堂,李玉花,瓦里奥·禄敏.银杉外生菌根形态观察法探讨[J].北华大学学报, 2005,6(4):348-349.
    33 Bending GD, Read DJ. Lignin and soluble phenolic degradarion by ectomycorrhizal and ericoid mycorrhizal fungi[J]. Mycological Research. 1997, 101:1348-1354.
    34 Brundrett M, Bougher N. Working with Mycorrhizae in Forestry and Agriculture [J]. Canberra: Pirie Printers. 1996.
    35刘应仙,孙会林.菌根的作用及菌根真菌的分离和鉴定[J].中国林业,2011. 2:52.
    36 Arocena, J. M. &K. R. Glowa. Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt. ) as revealed by soil solution composition [J]. Forest Ecology and Management, 2000, 133:61-70.
    37 Jentschke, G., B. Brandes. The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling[J]. Plant and Soil, 2000,220:243-246.
    38宝秋利.白音敖包沙地云杉外生菌根真菌调查及其共生菌土生空团菌纯培养条件的研究[D].内蒙古农业大学, 2005.
    39 Perez-MorenoJ,andn. J. Reaa. Mobilization and transfer of nutrient from litter to tree seedlings via the vegetative myeelium of ectomycorrhizal Plant. New Phytologist, 2000, 145:301-309.
    40 Griffiths R P,Baham J E. Soil solution chemistry of ectomycorrhizal mats in forest soil[J]. Soil Biology and Biochemistry, 1994, 26:331-337.
    41肖同建,杨庆松,冉炜,徐国华,沈其荣.接种菌根真菌的旱作水稻-绿豆间作系统养分利用研究[J].中国农业科学, 2010, 43(4):753-760.
    42 Bending G D, Read D J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI Activities of nutrient moblising enzymes in birch litter colonised by Paxillus involutus Fr. [J]. New Phytologist, 1995, 130:411-417.
    43 Schimel J P,Chapin F S. Tundra plant uptake of amino acid and NH4+nitrogen in situ:plants compete well for amino acid N[J]. Ecology, 1996, 77:2142-2147.
    44 Naeshom T, Ekblad A. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392:914-916.
    45 Read D J. Mycorrhizas in Ecosystems[J]. Experientia, 1991, 47:376-391.
    46李敏.褐环乳牛肝菌(Suillusluteus(L.:Fr) Gray)发酵生物学的研究[D].内蒙古农业大学,2007.
    47王有智,黄亦存.四种外生菌根真菌产生植物激素的研究[J].微生物学报. 1997. 24(2):72-74.
    48赵忠,王真辉.菌根真菌根际微生物间的关系及其对宿主植物的影响[J].西北林学院学报, 2001, 16(4):70-75.
    49赵志鹏,郭秀珍.外生菌根真菌纯培养中生理活性物质代谢的研究[J].林业科学. 1990.
    26(5):465-469.
    50 Kraigher H,Graling A and wang T. L. et al. Cytolinin production by two ectomyeorrhizal fungi in liquid culture[J]. Phytoehemistry. 1991. 30:2249-2254.
    51 Beyrle H. The role of phytohormones in the function and biology of mycorrhizas. In:Varma A,Hock B,eds. Mycorrhizas. Structure. Function[J]. Molecular Biology. Berlin: Springer-Verlag,1995. 365-390.
    52 Theodorou C,Bowenm G D. Mycorrhizal responses of radiata pine in experiments with different fungi[J]. Australian Forestry, 1970, 34:183-191.
    53雷增普,王昌温.生物制剂在油松侧柏造成林中的作用[J].北京林业大学学报, 1991, 13:80-89.
    54吴炳云.水分胁迫下的外生菌根对油松容器苗的影响[J].林业科学研究, 1991, 13:9-93.
    55闫伟,韩秀丽,白淑兰,邵东华.虎榛子几种菌根苗抗旱机制的研究[J].林业科学,2006,42(12):73-76.
    56赵志鹏,郭秀珍.外生菌根真菌纯培养的生物学研究[J].林业科学, 1993, 29(1):12-1.
    57张美庆,王幼珊,邢礼军. VA菌根优良抗旱菌株CX-91[J].土壤学报, 1994, 31:79-83.
    58 Marx D H, Bryan W C. Influence of ectomycorrhizae on survival and growth of aseptic seedlings of loblolly pine at high temperature[J]. Forest Science, 1971, 17:37-41.
    59 Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T. Susceptibility of ectomycorrhizal fungi to soil heating[J]. Fungal Biology, 2010, 114(5-6):467-472.
    60辜夕容,黄建国.铝对外生菌根真菌草酸分泌及磷、钾、铝吸收的影响[J].生态学报, 2010, 30(2): 0357-363.
    61 Hartley J. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment[J]Plant and Soil, 1997, 189:303-319.
    62程玉娥.外生菌根真菌提高杨树抗旱性的研究[D].西北农林科技大学, 2010.
    63 HEGGO A, ANGLE J S. Effects of Vesicular-Arbuscular Mycorrhizal Fungi on Heavy Metal Uptake by Soybean[J]. SoilBiology& Biochemistry, 1990, 22(4):865-869.
    64黄艺,陈有键,陶澍.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响[ J].应用生态学报, 2000, 11(3):431-434.
    65黄艺,李婷,费颖恒.外生菌根真菌对油松幼苗根际土壤重金属赋存的影响.生态农村环境学报, 2007, 23(3):70-76.
    66 Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations[J]. Tree Physiology, 2010, 30(10):1311-1319.
    67张琴,杨芳显,何凤扬,刘杰,陆燕勤. 1株外生菌根真菌的分离抗重金属能力测定[J].安徽农业科学, 2009, 37(33):16504-16506.
    68王淼焱,王洪娴,李敏等.菌根生物肥料的研究现状[J].山东科学2006,19(6):94~97.
    69 Kropp, B. R. and Langlois,C. G. Ectomycorrhizae in reforestation[J]. Can. J. For. Res. 1990, 20:438-451.
    70佟丽华,张红光,姚鑫.外生菌根真菌的作用应用开发前景展望[J].安徽农学通报, 2008, 14(14):86-89.
    71 C. Buam, M. Weih, T. Vewijst, F. Mkaesehin. Thee effect of nitrogen fertilization nad soil properties on myeohrriazl formation of Salix viminalis [J]. Forest Ecology and Management, 2002, 160:35-43.
    72 Ygiewiez PT, Anderson CP. Mycorrizae alter quality and quantity of carbon allocated below ground [J]. Nature, 1994, 369:58-60.
    73 Sehu, BlerA, Kluge M. Geosipihon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for Abruscular mycorrhizal rearch.In:Hoek B,ed[J]. The mycota LX Fungal associations. Berlin, Gemrnay: Springer Verlag,2000, 151-161.
    74 ColPaert J,Assehe JA van,Lujtens K. The growth of extrametrical mycelium of ectomycohrrizal fungi and the growth response of Pinus sylvestris L.[J]. New Phytol, 120:127-135.
    75 Garbyae, J. HelPer bacteria. A new dimension to the mycorrhizal symbiosis[J]. New Phytol, 1994, 128:197-210.
    76 J. V. ColPaert, A. Van laere, K. K. Van tichelen and J. A. Van assche. The use of inositol hexaphosphate as Phosphorus source by mycorrhiazl and non-mycorrzal Scots Pine (Pinus sylvestris)[J]. Functional Ecology, 1997, 11:407-415.
    77白淑兰,刘勇,周晶,等.大青山外生菌根真菌资源生态研究[J].生态学报, 2006, 26(3):838-841.
    78 Fernandez-Toiran LM, Agueda B. Fruitbodies of Cenococcum geophilum [J]. Mycotaxon, 2007, 100:109-114.
    79樊永军.内蒙古地区四种树木外生菌根形态多样性及分子鉴定[D].内蒙古农业大学. 2009.
    80 Trappe J M. Mycorrhizal host and distribution of Cenococcum graniforme [J]. Lloydia, 1964, 27:100-106.
    81 Trappe J M. Cenococcum graniforme-its distridution, ecology, mycorrhiza and inherent variation. Ph. D Thesis, University of Washington, Seattle, Washington, 1962.
    82 Wu BY, Nara K, Hogetsu T. Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers[J]. New Phytologist. 2005, 165(1):285-293.
    83 Douhan GW, Rizzo DM. Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum[J]. New Phytologist. 2005, 166(1): 263-271.
    84陈立红,闫伟,徐燕.土生空团菌(Cenococcum geophilum Fr.)的菌种鉴定及其遗传多样性的初步分析[J].中国农业科学2007, 40(10):2214-2220.
    85 Douhan GW, Huryn KL, Douhan LI. Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex[J]. Mycologia, 2007, 99(6):812-819.
    86张斌.内蒙古地区土生空团菌菌根多样性调查及其PCR_RFLP分析[D].内蒙古农业大学,2007.
    87 Buscardo E, Rodriguez-Echeverria S, Martin MP, De Angelis P, Pereira JS, Freitas H. Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest[J]. Fungal Biology, 2010, 114(8): 628-636.
    88 Goncalves SC, Portugal A, Goncalves MT, Vieira R, Martins-Loucao MA, M. Amelia, Freitas H. Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal[J]. Mycorrhiza, 2007, 17(8): 677-686.
    89 Goncalves SC, Martins-Loucao MA, Freitas H. Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils[J]. Mycorrhiza. 2009, 19(4): 221-230.
    90白淑兰,白玉娥,方亮.土生空团菌虎榛子形成的菌根及其对虎榛子生长的影响[J].林业科学. 2004, 40(6):194-196.
    91 Sun X (Sun, Xue), Li YH (Li, Yu-Hua), Vaario LM (Vaario, Lu-Min). Formation of mycorrhiza-like structures in cultured root/callus of Cathaya argyrophylla Chun et Kuang infected with the ectomycorrhizal fungus Cenococcum geophilum Fr. [J]. Journal of Integrative Plant Biology. 2006, 48(10):1163-1167.
    92 Vohnik M (Vohnik, M. ), Fendrych M (Fendrych, M. ), Albrechtova J (Albrechtova, J. ), Vosatka M (Vosatka, M. ). Intracellular colonization of Rhododendron and Vaccinium roots by Cenococcum geophilum, Geomyces pannorum and Meliniomyces variabilis[J]. Folia Microbiologica, 2007, 52(4):407-414.
    93何跃军,钟章成,刘济.接种外生菌根真菌对柏木幼苗生长的影响[J].贵州农业科学. 2008, 36(1):67-69.
    94华尔.实验室条件下樟子松幼苗外生菌根人工合成的研究[D].内蒙古农业大学,2003.
    95邵东华.大青山主要造林树种油松、华北落叶松人工菌根合成的研究[D].内蒙古农业大学, 2003.
    96 Trappe, J. M.. Synoptic keys to the genera and species of Zygo mycetous mycorrhizal fungi[J]. PhytopathoL. 1982, 72:1102-1108.
    97宝秋利,闫伟,梁显丽.土生空团菌(Cenococcum geophilum Fr.)菌丝体纯培养条件的初步研究[J].内蒙古农业大学学报, 2005, 26(1):33-36.
    98王磊;樊军锋;刘永红;杨培华;王孟昌.我国油松主要分布区种质资源遗传多样性[J].西北农林科技大学, 2009, 37(12):3-13.
    99周建勤,贾宏涛,朱金兆,谢建强.虎榛子群丛根系的固土作用研究[J].水土保持通报, 2010, 30(5): 229-231.
    100侯军华,李波.治沙优良植物虎榛子的栽培技术[J]. 2009, 6(103):56-57.
    101王幼珊,刘相梅.盆栽基质及营养液对AM真菌接种剂繁殖的影响[J].华北农学报, 2001, 16(4):81-86.
    102高俊凤,植物生理学实验技术[M].西安:世界图书出版社, 2000.