区间参数优化在液压系统污染控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其他传动方式相比,液压传动具有独特的技术优势,其应用领域几乎囊括了国民经济各工业部门。液压系统在长期工作过程中不可避免会受到污染,各种污染物造成系统和元件工作不稳定、性能恶化,甚至于发生灾难性后果。因此,应主动采取有效措施控制液压系统污染,以降低系统的故障率和维修时间,满足国民经济各行各业对液压系统安全可靠运行的迫切要求。
     控制液压系统污染的首要问题是合理地设计和维护过滤系统,降低各关键点的污染度,以保证敏感元件良好的工作性能,但同时又增加了成本,因此应引入优化的思想,在性能和成本之间折衷,做出最优决策。由于在优化建模中存在许多不确定参数,因此有必要采用先进的不确定性优化理论和方法,对过滤器进行优化配置研究。
     本文首先总结了国内外液压系统污染控制和不确定性优化方面的最新研究成果,指出了目前研究有待解决的问题,阐述了采用优化思想和不确定性优化方法对过滤器进行配置的必要性。其次,以典型单回路液压系统为研究对象,在深入探讨污染物迁移规律和污染传递方程的基础上,以过滤系统总的设计和维护运行成本为目标函数,以敏感元件污染耐受度和过滤器纳污容量为约束条件,建立了过滤器配置的优化决策模型,并通过对假想事例的分析,阐述了模型的具体应用方法。仿真研究表明,通过多阶段混合整数非线性规划(MMINLP)方法求解模型,可以获得液压系统污染度的状态信息与过滤系统运行成本等的关系,从而对吸油路、压力油路以及回油路是否需要安装过滤器以及何时更换(清洗)滤芯做出最优决策。
     最后,考虑到污染物侵入/产生率、污染度、污染耐受度、过滤器纳污容量、成本参数等不确定性因素,将其表示成区间数的形式,建立了液压系统过滤器配置的不确定性优化决策模型,并提出了一种新的优化方法——含区间参数的多阶段随机混合整数线性规划(IMMILP)方法对其求解,得到了不确定情况下过滤器的优化配置方案。假想事例结果分析表明,降低污染物侵入/产生率是控制系统维护运行成本的根本措施,而过滤器优化配置是控制系统维护运行成本的重要手段。
Compared with other transmission mode, hydraulic transmission has unique technical superiorities and its application fields almost include all the industrial departments of our national economy. Contamination of hydraulic system is inevitable in long-term process, and various contaminants lead to instability or performance deterioration, even disastrous consequences of hydraulic components and systems. Consequently, effective measures should be actively taken to control contamination of hydraulic system, which can reduce malfunction rate and maintenance time, satisfy the urgent request for safe and reliable operation of hydraulic systems in all departments of our national economy.
     The chief problem of contamination control is to design and maintain filtration system, reduce the contamination level of key points as low as possible, so as to ensure that sensitive components operate at excellent performance levels, but those also increase the cost at the same time. So ideas of optimization are introduced, compromise between performance and cost, and make optimum decision. Moreover, there are lots of uncertain parameters in optimization modeling, so the adoption of advanced optimization theory and method under uncertainty is essential to allocate filters.
     Firstly, the latest research results on contamination control for hydraulic system and uncertainty optimization are summarized, the problem remained to solve at present is pointed out, and the necessity of adopting optimum ideas and optimization theory under uncertainty to allocate filters is expounded. Secondly, based on throughly investigating the migration characteristics of the contaminants and contamination transfer equation in representative single-circuit hydraulic system, optimum decision-making model for allocation of the filters is established, regarding the total design and operation cost of filtration system as objective function, the contamination sensitivity of sensitive components and the dirt-holding capacity of filters as constraint conditions. Furthermore, application method of the optimization model is introduced by the analyses of hypothesis case study. Simulation results show that, the relationship between the status information of hydraulic contamination and the total operation cost of filtration system is obtained through the solution of the optimization model by multi-stage mixed integer non-linear programming (MMINLP) method, and then the optimization decisions are made on whether the filters are allocated in suction, pressure or return lines and when those filter elements should be replaced or cleaned in hydraulic system.
     Finally, considering uncertain factors such as contaminants intruded/generated rate, contamination level, contamination sensitivity, dirt-holding capacity of filters, parameters related to cost, integrated optimum decision-making model under uncertainty for allocation of the filters is set up in hydraulic system by expressing those uncertain factors as interval-parameter. Then a new optimization method, named interval-parameter multi-stage stochastic mixed integer linear programming (IMMILP) is employed to solve the optimized model, and the allocating schedule of hydraulic filters under uncertainty is obtained. Analyses results of hypothesis case show that, reducing contaminants intruded/generated rate is the fundamental measure to control the total operation cost of filtration system, and optimum allocation of hydraulic filters is the important means to control the total operation cost.
引文
[1]夏志新,张虎.液压系统污染控制技术现状与发展.液压气动与密封,2000,(1): 32~39
    [2]贾瑞清,王炉平.液压污染控制技术的研究现状及重点展望.液压气动与密封,2004,(1): 15~17
    [3]李越.液压系统污染问题的探.机床与液压,2004,(1): 153~154
    [4]张剑慈.液压系统工作介质的污染分析与控制污染的措施.工业安全与防尘,2000,(7): 14~17
    [5] E. C. Fitch. A new theory for the contaminant sensitivity of fluid power pumps. The BFPR Journal, 1976
    [6] R. K. Tessmann, E. C. Fitch. Field contaminants ingression rates– how much? Proc. of 7th Annual Fluid Power Research Conference, 1974: 187~193
    [7] Hong I. T., Fitch E. C. Evaluation of hydraulic cylinder contaminant sensitivity. Proc. of the National Conference on Fluid Power, 1984, 38: 393
    [8] W. Backe. Investigation of the Contamination sensitivity of Hydraulic Pump. Proc. of Intl.conf.on Fluid Power, 1984
    [9] W. Backe. Wear sensitivity of hydraulic displacement units to solid contaminants. Olhydraulik und pneumatic, 1989, 33 (6): 29~38
    [10] D. E. Bowns. Contamination control fluid power at Bath. Report No.711, 1983
    [11] M. Robert. Contamination control-for increased production. Proc. of 47th National conf. on Fluid Power, 1996, I96-12.6
    [12]楼井滕也.液压泵的污染敏感度试验.油压与空气压(日),1983,(11)
    [13]小林靖夫.斜盘式轴向往塞泵的污染敏感度试验.油压技术(日),1984,(2)
    [14] C. Liu, J. S. Stecki, P. Dransfield. Dynamic contamination control model for fluid contamination. In: Proc. of Intl. Conf. on Fluid Power Control and Robotics. Chengdu, China: 1990. 342~347
    [15] C. Liu, J.S. Stecki. Intelligent expert system for contamination control in hydraulic control system. In: Proc. of 6th intl. Conf. on industrial and engineering applications of artificial intelligence and expert system. Edinburgh: 1993. 538~543
    [16] Pavlat Mark R., Canil Jeffrey J. New contamination control techniques for papermachine lubricating and hydraulic systems. Tappi Journal, 1985, 68 (7): 76~80
    [17] P. Multanen, J. Rinkinen, H. Kangasniemi, et al. Filtration efficiency under variable flow conditions-test series with different flow amplitudes. In: IFPE. Chicago, USA: 2000. 233~239
    [18] Foszcz Joseph L. Filtering hydraulic systems. Plant Engineering (Barrington, Illinois), 2004, 58 (7): 36~39
    [19] Poeth Brad. Proactive maintenance. Fluid Power Journal, 2005, 12 (1): 28~30
    [20] Krivejko Gary E. Contamination control in hydraulic and lubricating systems. Iron and Steel Engineer, 1985, 62 (2): 45~50
    [21] Cunningham Ernest R. Cleaning hydraulic fluids. Plant Engineering (Barrington, Illinois), 1987, 41 (11): 28~34
    [22] Town H. C. Contamination control in machine tool systems. Power International, 1987, 33 (386): 43~45
    [23] East William R. Preventive maintenance cures hydraulic systems downtime problems. Foundry Management & Technology, 1988, 116 (10): 40~43
    [24] Day M. J. Condition monitoring of fluid systems-the complete approach. Insight: Non-Destructive Testing and Condition Monitoring, 1997, 39 (8): 540~547
    [25]夏志新.液压系统污染控制.北京:机械工业出版社,1992
    [26]赵大庆.液压泵污染磨损与控制.北京:煤炭工业出版社,1993
    [27]吴勇.液压系统中油液污染控制方程的研究.煤炭学报,1995,20 (6): 647~652
    [28]夏志新.液压和润滑系统的主动预防性维护.液压与气动,1993,(6): 7~13
    [29]贾瑞清,郭建曾,吴雪平.液压系统颗粒污染和过滤状态的关系.机床与液压,2000,(1): 72~74
    [30]赵大庆,周士瑜.液压系统固体污染物尺寸特性的定量分析.机床与液压,1991,(2): 26~29
    [31]周士瑜,赵大庆,乔石.斜轴式轴向柱塞泵污染磨损与控制的研究.全国流体传动与控制学术年会,1987
    [32]宋雪丽,吴勇,卢敬东等.数字信号处理器TMS320LF2407在油液污染检测中的应用.液压与气动,2004,(9): 40~42
    [33]赵连利,罗富生,姚贵友.污染传递框图及其应用.东北大学学报(自然科学版),1997,18 (5): 528~531
    [34]涂群章,龚烈航,王强等.液压污染控制系统建模.中国机械工程,2001,12 (6):629~631
    [35]顾冰芳,龚烈航,高久好.液压系统油液污染度评估的加权灰关联分析方法.润滑与密封,2004,(2): 68~70
    [36]刘金国.煤矿机械液压系统油液污染控制模型的研究.煤炭学报,1999,24 (1): 89~93
    [37]员创治,陈彩萍,赵彤涌.小油箱和零油箱洁净液压系统及其净化性能分析.煤炭学报,2002,27 (2): 216~219
    [38]刘混举,曹惠斌.油箱容积对液压系统油液污染度影响的分析研究.佳木斯大学学报(自然科学版),1999,17 (4): 412~416
    [39]童伟,刘树道.油液污染对节流调速回路速度刚度的影响.华南理工大学学报(自然科学版),2000,28 (6): 95~99
    [40]张奕.中俄典型液压系统污染度等级标准研究.航空标准化与质量,2002,(1): 21~24
    [41]彭有云.液压污染控制领域内的国际标准和国内标准简介.昌河科技,2002,(2): 15~18
    [42]战兴群,吴盛林,赵克定等.基于人工智能的液压系统故障诊断方法的研究.机床与液压,1997,(6): 6~8
    [43]王益群,高英杰.液压传动及控制系统故障诊断技术的新进展.燕山大学学报(自然科学版),1998,22 (1): 1~3
    [44]黄志坚,裘丽华.液压故障模糊神经网络诊断模型探讨.冶金设备,2001,(4): 33~36
    [45]陈章位,路甬祥,傅周东.液压设备状态监测与故障诊断技术.液压与气动,1995,(2): 3~7
    [46]黄安雅,陈兆能,朱继梅.模糊信息处理技术在故障诊断中的应用.传动技术, 1999,(1): 10~17
    [47]周新聪,刘东风,程海明等.主动维修策略与油液分析技术.液压与气动,2004,(6): 78~80
    [48]晏小伟,杨曙东等.海水泵污染磨损机理的初步研究.液压与气动,2004,(5): 62~64
    [49] R. E. Bellman, L. A. Zadeh. Decision-making in a fuzzy environment. Management Science, 1970 (17): 141~164
    [50] A. Kaufmann, M. M. Gupta. Fuzzy mathematical models in engineering andmanagement science. Amsterdam, North-Holland, 1988
    [51] T. Onisawa. Fuzzy theory in reliability analysis. Fuzzy Sets and System, 1989, 29 (2): 250~261
    [52]李廷杰.模糊可靠性的概念和方法探讨.系统工程理论与实践,1989,(3): 26~31
    [53]江毅.软计算中的协作和融合技术综述.模糊系统和数学,1998,12 (4):1~10
    [54] Huang G. H., Baetz B.W., Patry G. G. A gery fuzzy linear programming approach for waste management and planning under uncertainty. Civil Engineering Systems, 1993, 10: 123~146
    [55] Zimmermann H. J. Fuzzy Sets and Decision Analysis. Elsevier Science, Amsterdam, Holland, 1984
    [56] Slowinski R. A multi-criteria fuzzy linear programming method for water supply system development planning, Fuzzy Sets and Systems, 1986, 19: 217~237
    [57] Slowinski R., A. Urbaniak, J. Weglarz. Probabilistic and fuzzy approaches to capacity expansion planning of a water supply system. In: L. Valadares Tavares, J. Evaristo da Silva. Systems Analysis Applied to Water and Related Land Resources. Oxford: Pergamon Press, 1986. 93~98
    [58] Slowinski R. An interactive method for multi-objective linear programming with fuzzy parameters and its application to water supply planning. In: J. Kacprzyk, S.A. Orlovski. Optimization Models Using Fuzzy Sets and Possibility Theory. Dordrecht: D. Reidel Publ. Co., 1987. 396~414
    [59] Lee. Y. W., Bogardi I., Stansbury J. Fuzzy decision making in dredged-material management. J. of Environ. Eng., 1991, 117 (5): 614~628
    [60] Huang G. H., Baetz B. W., Patry G. G. Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Economic Planning Science, 1994, 29: 17~38
    [61] Huang G. H., Baetz B. W., Patry G. G. Waste flow allocation planning through a grey fuzzy quadratic programming approach. Civil Eng. Syst., 1994, 11: 209~243
    [62] Huang G. H., Sae-Lim N., Liu, L., et al. An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning. Environmental Modeling and Assessment, 2001, 6: 271~283
    [63] Chang N. B., Chen Y. L., Wang S. F. A fuzzy interval multi-objective mixed integer programming approach for the optimal planning of solid waste management systems.Fuzzy Sets and System, 1997, 89: 35~59
    [64] Chanas S., Zielinski P. On the equivalence of two optimization methods for fuzzy linear programming problems. European Journal of Operational Research, 2000, 121: 56~63
    [65] Liu L., Huang G. H., Liu Y., et al. A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Engineering Optimization, 2003, 35 (2): 177~199
    [66] Cui W., Blockley D. I. Decision making with fuzzy quadratic programming. Civil Engineering Systems, 1990, 7: 140~146
    [67] Birge J. R. Decomposition and partitioning methods for multistage stochastic programs. Oper. Res., 1985, 33: 989~1007
    [68] Huang G. H., Loucks D. P. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering and Environmental Systems, 2000, 17: 95~118
    [69] Loucks D. P., Stedinger J. R., Haith D. A. Water Resource Systems Planning and Analysis. Englewood Cliffs N. J.: Prentice-Hall, 1981
    [70] Ahmed S., Tawarmalani M., Sahinidis N. V. A finite branch-and-bound algorithm for two-stage stochastic integer programs. Math. Program Ser. A, 2004, 100: 355~377
    [71] Dai L., Chen C. H., Birge J. R. Convergence properties of two-stage stochastic programming. Journal of Optimization Theory and Applications, 2000, 106: 489~509
    [72] Kovacs L., Boros E., Inotay F. A two-stage approach for large-scale sewer systems design with application to the Lake Balaton resort area. European Journal of Operation Research, 1986, 23 (2): 169~178
    [73] Luo B., Maqsood I., Yin Y. Y., et al. Adaption to climate change through water trading under uncertainty-An inexact two-stage nonlinear programming approach. Journal of Environmental Informatics, 2003, 2: 58~68
    [74] Maqsood I., Huang G. H., Yeomans J. S. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. European Journal of Operational Research, 2005, 167 (1): 208~225
    [75] Pereira M. V. F., Pinto L. M. V. G. Multi-stage stochastic optimization applied to energy planning. Mathematical Programming, 1991, 52 (2): 359~375
    [76] Ruszczynski A. Parallel decomposition of multistage stochastic programming problems. Mathematical Programming, 1993, 58: 201~228
    [77] Ruszczynski A., A. Swietanowski Accelerating the regularized decomposition method for two-stage stochastic linear problems. European Journal of Operational Research, 1997, 101: 328~342
    [78] Schultz R., L. Stougie, M. H. van der. Vlerk. Two-stage stochastic integer programming: a survey. Statistica Neerlandica, 1996, 50 (3): 404~416
    [79] Mobasheri F., Harboe R. C. A two-stage optimization model for design of a multipurpose reservoir. Water Resources Research, 1970, 6 (1): 22~31
    [80] Pereira M. V. F., Pinto L. M. V. G. Stochastic optimization of a multi-reservoir hydroelectric system: a decomposition approach. Water Resources Research, 1985, 6: 779~792
    [81] Wang D., Adams B. J. Optimization of real-time reservoir operations with Markov decision processes. Water Resources research, 1986, 22: 345~352
    [82] Ferrero R. W., Rivera J. F., Shahidehpour S. M. A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multi-reservoir systems. IEEE Transactions on Power Systems, 1998, 13: 1534~1540
    [83] Consigli G., Dempster M. A. H. Dynamic stochastic programming for asset-liability management. Annals of Operations Research, 1998, 81: 131~161
    [84] Golub B., Holmer M., McKendall R., et al. A stochastic programming model for money management. European Journal of Operational Research, 1995, 85: 282~296
    [85] Gulpinar N., Rustem B., Settergren R. Multistage stochastic programming in computational finance. In: Computational Methods in Decision Making, Economics and Finance: Optimization Models. Dordrecht: Kluwer Academic Publishers, 2002. 33~45
    [86] Gulpinar N., Rustem B., Settergren R. Multistage stochastic mean-variance portfolio analysis with transaction cost. Innovations in Financial and Economic Networks, 2003, 3
    [87] Kouwenberg R. Scenario generation and stochastic programming models for asset liability management. European Journal of Operational Research, 2001, 134 (2): 279~293
    [88] Huang G. H., Baetz B.W., Patry G. G. An interval linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 1992, 9: 319~335
    [89] Chang N-B., Wang S. F. A fuzzy goal programming approach for the optimal planningof metropolitan solid waste management systems. Journal of Operation Research, 1997, 32: 303~321
    [90] Huang G. H., Baetz B. W., Patry G. G. Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Economic Planning Science, 1995, 29: 17~38
    [91] Huang G. H. IPWM: an interval parameter water quality management model. Engineering Optimization, 1996, 26: 79~103
    [92] Huang G. H. A hybrid inexact-stochastic water management model. European Journal of Operational Research, 1998, 107: 137~158
    [93] Leimbach M. Development of a fuzzy optimization model, supporting global warming decision-making. Environmental and Resource Economics, 1996, 7: 163~192
    [94] Y. P. Li, G. H. Huang, S. L. Nie. An Interval-Parameter Multi-Stage Stochastic Programming Model for Water Resources Management under Uncertainty. Advances in Water Resources, 2006, 29: 776~789
    [95] Savage L.J. The Foundations of Statistics. New York: Wiley, 1954
    [96] Luce R. D., Raiffa H. Games and Decisions: Introduction and Critical Survey. New York: Wiley, 1957
    [97] Resnik M. D. Choice: An Introduction to Decision Theory. Minneapolis: University of Minnesota Press, 1987
    [98] Inuiguchi M., Sakawa M. Minimax regret solution to linear programming problems with an interval objective function. European Journal of Operational Research, 1995, 86: 526~536
    [99] Drezner Z., Guyse J. Application of decision analysis techniques to the Weber facility location problem. European Journal of Operational Research, 1999, 116: 69~79
    [100] Loulou R., Kanudia A. Minimax regret strategies for greenhouse gas abatement: methodology and application. Operations Research Letters, 1999, 25: 219~230
    [101] Inuiguchi M., Tanino T. Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems, 2000, 115: 83~92
    [102] Averbakh I. Minmax Regret linear resource allocation problems. Operations Research Letters, 2004, 32: 174~180
    [103] Yarer R. R. Decision making using minimization of regret. International Journal of Approximate Reasoning, 2004, 36: 109~128
    [104] Huang G. H., Baetz B.W., Patry, G. G. Grey integer programming: An application to waste management planning under uncertainty. European Journal of Operation Research, 1995, 83: 594~620
    [105] Huang G. H., Baetz B.W., Patry G. G, et al. Capacity planning for an integrated waste management system under uncertainty: a north American case study. Waste Management & Research, 1997, 15: 523~546
    [106]程素萍.过滤器的选择.机械管理开发,2003,72 (3): 26~27
    [107]卢继霞,贾瑞清,夏志新. ISO 4406新旧标准简介及修订原因说明.机床与液压,2006,(5): 228~230, 159
    [108]藏发业,董梅.工程机械液压系统污染特性分析与控制.建筑机械化,2002,23 (1): 41~42
    [109]朱淑荣,丁振利,黄爱平.液压系统滤油器应用技术.机电设备,2002,19 (3): 23~26
    [110]郑长松,马彪,孙宪林等.液压系统污染控制动平衡研究.机床与液压,2005,(8): 126~129