重组南瓜胰蛋白酶抑制剂Ⅰ的分离纯化及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南瓜胰蛋白酶抑制剂I(Cucurbita maxima trypsin inhibitor I,CMTI-I)是一种来源于南瓜籽的经典类丝氨酸蛋白酶抑制剂,该家族由20多种成员组成。CMTI的成员分子量小、结构简单、作用机制清楚,是研究活性蛋白质分子结构与功能关系及作用机制的良好工具。由于CMTI家族各成员在分子量和结构方面相近,目前很难从南瓜籽中分离纯化出大量单一CMTI,从而限制了其药用开发研究。为此,我室构建了表达重组CMTI-I(rCMTI-I)的GSll5毕赤酵母工程菌。为了对rCMTI-I进行深入的研究与开发,本论文研究制备了以微晶纤维素为固定化介质的rCMTI-I亲和纯化介质,建立了rCMTI-I的分离纯化工艺,研究了rCMTI-I对肿瘤细胞增殖的影响,并研究了rCMTI-I对明胶酶的作用。研究内容与结果主要有以下几个方面。
     1.rCMTI-I亲和层析介质的制备
     首先用环氧氯丙烷活化柱层析用微晶纤维素,并以胰蛋白酶为配基交联于其上获得了亲和层析介质,同时考察了微晶纤维素的最佳活化条件以及制备微晶纤维素亲和层析介质最佳胰蛋白酶用量。最佳活化条件为1:1的2.4mol/L NaOH溶液与DMSO(体积比)作为混合溶剂,活化温度为30℃,活化时间3h环氧氯丙烷的用量为20ml/g时环氧基密度最大。在最佳活化条件下,每克微晶纤维素的环氧基含量为(302.4908±10)μmol/g。
     2.rCMTI-1分离纯化工艺的研究
     用所制备的亲和层析介质从含有rCMTI-I的培养基上清中直接分离纯化rCMTI-I。通过Sephadex G-10层析对获得的亲和层析洗脱液冷冻干燥品进行脱盐,再用Sephadex G-25层析进一步纯化,采用Tricine-SDS PAGE以及抑制活力测定对活性蛋白峰进行追踪,获得了基本纯化的rCMTI-I。与用阳离子交换剂和阴离子交换剂作为纯化介质相比,亲和层析介质纯化效果较好。
     3.rCMTI-I对肿瘤细胞增殖的影响
     研究了rCMTI-I对肿瘤细胞增殖的影响,发现rCMTI-I对卵巢癌SKOV3细胞和SE-2肿瘤细胞的增殖有非常明显的抑制作用,并且这种抑制呈明显的剂量—效应关系,在浓度为3.82×10~2μmol/ml时rCMTI-I对两种肿瘤细胞的增殖抑制率分别为69.3%和86.5%。本结果预示着rCMTI-I有抗肿瘤作用。
     4.rCMTI-I对肿瘤细胞增殖的影响
     采用琥珀酰明胶法测定rCMTI-I对明胶酶的作用,显示rCMTI-I具有抑制明胶酶的活性,揭示rCMTI-I可能具有抑制明胶酶降解基底膜抑制肿瘤转移的作用。
     本研究取得的主要研究成果有:
     (1)研究制备了偶联有胰蛋白酶的柱层析用微晶纤维素亲和层析介质,并在此基础上研究建立了从工程菌发酵表达的上清液中分离纯化rCMTI-I的工艺,该工艺适合规模化生产。
     (2)研究发现rCMTI-I具有抑制肿瘤细胞增殖的活性,揭示rCMTI-I可能具有抗肿瘤作用。
     (3)采用琥珀酰明胶法测定rCMTI-I对明胶酶的作用,显示rCMTI-I具有抑制明胶酶的活性,揭示rCMTI-I可能具有抑制明胶酶降解基底膜抑制肿瘤转移的作用。
     本研究对小分子活性肽的表达、分离纯化具有指导意义,为rCMTI-I的药用开发奠定了基础。
Cucurbita maxima trypsin inhibitor I (CMTI-I) is one kind of the serine protease inhibitors from Cucurbita family which consists of more than 20 members. Because of their low molecular weights, simple structures and clear mechanism, CMTIs are used as tools for the study of the structure-function relationships of active proteins and their mechanism. Though natural CMTIs have clear activities, it is difficult to develope them into drugs because of their similarities in molecular weights and structures of different members of the family, which results in the difficulty to get large amount of CMTI-I by isolation from Cucurbita maxima seeds. For this reason, the genetic engineering strains of Pichia pastoris GS115 producing recombinant CMTI-I (rCMTI-I) was constructed in our lab. In order to carry out deep research and development for rCMTI-I, the isolation and purification procedure was established and the tumor cell multiplication inhibition activity was studied in this paper. The main research contents and results are as follows.
     1 Preparation of rCMTI-I affinity chromatography medium
     In order to establish a cheap isolation and purification procedure for rCMTI-I by affinity chromatography, the preparation of the affinity medium was studied. First, the affinity medium was prepared by activating microcry stalline cellulose for column chromatography use with epichlorohydrin and coupling trypsin as the lingand to the matrix. Meanwhile activating conditions and the use of trypsin for the affinity medium were studied. The best condition for activation is using a mixture solvent of 2.4mol/L NaOH solution and DMSO(volume rate is 1: 1), at 30℃, activating for 3 hours, using 20ml of epichlorohydrin for microcry stalline cellulose of 1g. The epoxy density of activated microcry stalline cellulose under the best condition was (302.4908±10)μmol/g.
     2 Establishment of rCMTI-I purification procedure
     Rcombiment CMTI-I was isolated directly from the culture medium by using the prepared affinity medium. The resulting rCMTI-I sample was desalted by Sephadex G-10 which could remove the low molecular weight materials of rCMTI-I and salt at the same time and further purified by Sephadex G-25 chromatography. Pure rCMTI-I was obtained. Affinity chromatography was more effective compared with ion exchange chromatography.
     3 Study on the tumor cell multiplication inhibition activity of rCMTI-I
     The in vitro study of tumor cell multiplication inhibition activity of rCMTI-I showed that rCMTI-I could significantly inhibit SKOV3 cell line and SE-2 cell line, and the action had a dose-dependent effect with inhibition rates of 69.3% and 86.5% for the two cell lines respectively at the concentration of 3.82×10~(-2)μmol/ml. The results suggest that rCMTI-I may have anti-tumor activity.
     4 Study on the MMPs inhibition activity of rCMTI-I
     The inhibition activity of rCMTI-I on MMPs was tested with TNBSA assay, which showed a dose-dependent effect. The results suggest that rCMTI-I may have anti-tumor metastasis effect.
     The main achievements obtained in the study are as follows:
     a. The isolation and purification procedure of rCMTI-I from the supernatant of cultured medium was established on the basis of affinity medium preparation and investigation. The procedure is suitable for large scale production.
     b. The tumor cell multiplication inhibition activity on tumor cells of rCMTI-I was found, which gave us a new thought to study the anti-tumor activity of rCMTI-I.
     c. The activity of rCMTI-I on MMPs was tested with TNBSA assay, which showed an inhibition activity.
     The study has laid the foundation for the development of rCMTI-I as a new drug.
引文
[1] van Gent D, Sharp P, Morgan K, et al. Serpins: structure, function and molecular evolution[J]. Int J Biochem Cell Biol, 2003, 35(11): 1536-1547.
    [2] Luckett S, Santiago Garcia R, Barker JJ, et al. High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds[J]. J Mol Biol, 1999, 290(2): 525-533.
    [3] Schechter I, Berger A. On the size of the active site proteases I Papain[J]. Biochim Biophys Res Commun, 1967,27(2): 157-162.
    [4] Hernandez JF, Gagnon J, Chiche L, et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure[J]. Biochemistry, 2000, 39(19): 5722-5730.
    [5] Hamato N, Koshiba T, Pham TN, et al. Trypsin and elastase inhibitors from bitter gourd (Momordica charantia Linn.) seeds: purification, amino acid sequences, and inhibitory activities of four new inhibitors[J]. J Biochem (Tokyo),1995,117(2): 432-437.
    [6] Kowalska J, Zablocka A, Wilusz T. Isolation and primary structures of seven serine proteinase inhibitors from Cyclanthera pedata seeds[J]. Biochimica et Biophysica Acta, 2006,1760(7): 1054-1063.
    [7] Polanowski A, Wilusz T, Nienartowicz B, et al. Isolation and partial amino acid sequence of the trypsin inhibitor from the seeds of Cucurbita maxima.[J]. Acta Biochim Pon, 1980, 27(3-4): 371-382.
    [8] Wieczorek M, Otlewski J, Cook J, et al. The squash family of serine proteinase inhibitors. Amino acid sequences and association equilibrium constants of inhibitors from squash, summer squash, zucchini, and cucumber seeds[J]. Biochem Biophys Res Commun, 1985, 126(2): 646-652.
    
    [9] Kazmierczak K, Zablotna E, Jaskiewicz A, et al. Selection of low-molecular-mass trypsin and chymotrypsin inhibitors based on the binding loop of CMTI- III using combinatorial chemistry methods[J]. Biochem Biophys Res Commun, 2003, 310(3): 811-815.
    [10] Bode W, Greyling H J, Huber R, et al. The refined 2.0A X-ray crystal structure of the complex formed between bovine b-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima)[J]. FEBS Lett. 1989, 242(2): 285-292.
    [11] Lesner A, Brzozowski K, Kupryszewski G, et al. Design, Chemical Synthesis and Kinetic Studies of Trypsin Chromogenic Substrates Based on the Proteinase Binding Loop of Cucurbita maxima Trypsin Inhibitor (CMTI-III)[J]. Biochemical and Biophysical Research Communications, 2000, 269(1): 81-84.
    [12] Chakraborty S, Haldar U, Bera AK, et al. Recognition and stabilization of a unique CPRI-structural motif in cucurbitaceae family trypsin inhibitor peptides: molecular dynamics based homology modeling using the X-ray structure of MCTI-II[J]. J Biomol Struct Dyn, 2001, 18(4): 569-577.
    [13] Bolewska K, Krowarsch D, Otlewski J, et al. Synthesis, cloning and expression in Escherichia coli of a gene coding for the Met8→Leu CMTI-I-a representative of the squash inhibitors of serine proteinases[J]. FEBS Lett, 1995, 377(2) : 172-174.
    [14] Thaimattam R, Tykarska E, Bierzynski A, et al. Atomic resolution structure of squash trypsin inhibitor: unexpected metal coordination[J]. Acta Crystallogr D Biol Crystallogr, 2002, 58(9): 1448-1461.
    [15] Zhukov I, Jaroszewski L, Bieraynski A. Conservative mutation Met 8→Leu affects the folding process and structural stability of squash trypsin inhibitor[J]. Protein Sci, 2002, 9(2): 273-279.
    [16] Cai M, Gong Y, Wen L, et al. Correlation of binding-loop internal dynamics with stability and function in potato I inhibitor family: relative contributions of Arg(50) and Arg(52) in Cucurbita maxima trypsin inhibitor-V as studied by site-directed mutagenesis and NMR spectroscopy[J]. Biochem, 2002, 41(30) : 9572-9579.
    [17] Krishnamoorthi R, Gong YX, Richardson M. A new protein inhibitor of trypsin and activated Hageman factor from pumpkin (Cucurbita maxima) seeds[J]. FEBS Lett, 1990, 273(1,2): 163-167.
    [18] Zavodszky M, Chen CW, Huang JK, et al. Disulfide bond effects on protein stability:designed variants of Cucurbita maxima trypsin inhibitor-V[J].Protein Sci,2001,10(1):149-160.
    [19]Chakraborty S,Bhattacharya S,Ghosh S,et al.Structural and interactional homology of clinically potential trypsin inhibitors:molecular modelling of cucurbitaceae family peptides using the X-ray structure of MCTI-Ⅱ[J].Protein Eng,2000,13(8):551-555.
    [20]Krowarsch D,Cierpicki T,Jelen F,et al.Canonical protein inhibitors of serine proteases[J].Cell Mol Life Sci,2003,60(11):2427-2444.
    [21]Lesner A,Kupryszewski G,Rolka K.Chromogenic substrates of bovine beta-trypsin:the influence of an amino acid residue in P1 position on their interaction with the enzyme[J].Biochem Biophys Res Commun,2001,285(5):1350-1353.
    [22]Grzesiak A,Buczek O,Petry I,et al.Inhibition of serine proteinases from human blood clotting system by squash inhibitor mutants[J].Biochim Biophys Acta,2000,1478(2):318-324.
    [23]McBride JD,Freeman HN,Leatherbarrow RJ.Selection of human elastase inhibitors from a conformationally constrained combinatorial peptide library[J].Eur J Biochem,1999,266(2):403-412.
    [24]蔡祖花,王凤山,张天民.胰蛋白酶抑制剂的临床研究概况[J].中国生化药物杂志,2000,21(3):157-159.
    [25]Hearn M,Edland S,Ogbum C,et al.Trypsin inhibitor activities of fibroblasts increase with age of donor and are unaltered in familial Alzheimer's disease[J].Exp Gerontol,1994,29(6):611-623.
    [26]Fukuda M,Fijiyama Y,Sasaki M,et al.Monitor peptide(rat pancreatic secretory trypsin inhibitor) directly stimulates the proliferation of the nontransformed intestinal epithelial cell line,IEC-6[J].Digestion,1998,59(4):326-330.
    [27]Wisniowska J,Rudnicki K,Leluk J,et al.An endogenous RNA synthesis-promoting oligopeptide from Cucurbita pepo var.patissonina[J].Planta.1988,173:46-51.
    [28]Popik W,Inglot AD,Wilusz T,et al..Participation of polypeptide proteinase inhibitors in proliferation of fibroblasts[J].Arch Immunol Ther Exp,1988,36(5):645-653.
    [29]Otlewski J,Zbyryt T,Krokoszyfiska I,et al.Inhibition of serine proteinases by squash inhibitors[J].Biol Chem Hoppe-Seyler,1990,371(7):589-594.
    [30]Polanowska J,Krokoszynska I,Czapinska H,et al.Specificity of human cathepsin G[J].Biochim Biophys Acta,1998,1386(1):189-198.
    [31]Wynn R,Laskowski Jr M.Inhibition of human β-factor ⅫA by squash family serine proteinase inhibitors[J].Biochem Biophys Res Commun,1990,166(3):1406-1410.
    [32]Otlewski J,Hayashi K,Takehisa T,Hamato N,et al.Inhibition of serine proteases of the blood coagulation system by squash family protease inhibitors[J].J Biochem(Tokyo),1994,116(5):1013-1018.
    [33]Sessa DJ,Wolf WJ.Bowman-Birk inhibitors in soybean seed coats[J].Ind Crop Prod.2001,14(1):73-83.
    [34]Bhattacharyya A,Rai S,Babu CR,et al.A trypsin and chymotrypsin inhibitor from Caesalpinia bonduc seeds:Isolation,partial characterization and insecticidal properties[J].Plant Physiol Biochem,2007,45(5):169-177.
    [35]Zhao R,Luo J,Shangguan D,et al.A novel matrix for high performance affinity chromatography and its application in the purification of antithrombin Ⅲ[J].J Chromatogr B:Analyt Technol Biomed Life Sci,2005,816(1-2):175-181.
    [36]郭刚军,马林,谢文林,等.两步法活化微晶纤维素及在固定木瓜蛋白酶中的应用[J].中山大学学报(自然科学版),2001,40(3):45-47.
    [37]Kotel nikova N,Mikhailova S,Vlasova E.Immobilization of proteolytic enzymes trypsin and α-chymotrypsin to cellulose matrix[J].Russ J Appl Chem,2007,80(2):322-329.
    [38]Krysteva MA,Blagov SR,Sokolov TT.New method for covalent immobilization of proteins to cellulose and cellulose derivatives[J].J Appl Biochem,1984,6(5-6):367-73.
    [39]Tominaga M,Takeda H,Muramatu M.Interaction of urinary trypsin inhibitor,UT168,with bovine trypsin[J].J Biochem,1982,91(5):1391-1393.
    [40]Tanaka Y,Maehara S,Sumi H,et al.Purification and partical characterization of two forms of urinary trypsin inhibito[J].Biochem Biophys Acta,1982,705(2):192-194.
    [41]Jonsson BM,loffler C,Ohlsson K.Human granulocyte elastase is inhibited by the urinary trypsin inhibitor[J].Hoppe-Seyler' s Z Physiol Chem,1982,363(10):1167-1170.
    [42]陈海相,余志成,陈文兴,等.β-环糊精修饰纤维素纤维的制备[J].纺织学报,2003,24(5):408-411.
    [43]史清洪,彭冠英,孙舒,等.环氧氯丙烷活化琼脂糖凝胶过程强化及性能评价[J].过程工程学报,2007,7(4):743-746.
    [44]Scoble JA,Scopes RK.Assay for Determining the Number of Reactive Groups on Gels Used in Affinity Chromatography and Its Application to the Optimization of the Epichlorohydrin and Divinylsulfone Activation Reactions [J].J Chromatogr A,1996,752(1/2):67-76.
    [45]朱俭.生物化学实验[M].第1版.上海:上海科学技术出版社,1981:186-189.
    [46]Guo W,Ruckenstein E.Crosslinked mercerized cellulose membranes for the affinity chromatography of papain inhibitors[J].J Memb Sci,2002,197(1-2):53-62.
    [47]Scoble JA,Scopes R K.Assay for determining the number of reactive groups on gels used in affinity chromatography and its application to the optimisation of the epichlorohydrin and divinylsulfone activation reactions[J].J Chromatogr A,1996,752(1/2):67-76.
    [48]Cooke TF.Fibers as supports for catalysts:a survey of the literature[J].J of Pol Eng,1990,9(1):11-22.
    [49]何俊,李勇,但德忠,等.抗HSA与微晶纤维素的固定化[J].现代临床医学生物工程学杂志,2001,7(1):16-17.
    [50]Matsumoto I,Mizuno Y,Seno N.Activation of Sepharose with Epichlorohydrin and Subsequent Immobilization of Ligand for Affinity Adsorbent[J].J Biochem (Tokyo),1979,85(4):1091-1098.
    [51]McNee J,Wang F,Leatherbarrow R.Expression and Secretion of Biologically Active CMTI-I in Saccharomyces cerevisiae[J].Protein Pept Lett,1999,6(6):351-358.
    [52]张龙翔.生化实验方法和技术[M].第2版.北京:高等教育出版社,1997,149-152.
    [53]凌敏华.丝瓜、哈密瓜蛋白酶抑制剂的研究[J].生物化学与生物物理学报,1993,25(1):19-24.
    [54]奥斯伯F等著,颜子颖,等译.精编分子生物学实验指南[M],北京:科学出版社,1998:338-340.
    [55]Fish WW,Reynolds JA,Tanford C.Gel chromatography of proteins indenaturing solvents[J].J Bio Chem,1977,245(19):5166-5168.
    [56]杜中军,朱水芳,黄文胜,等.毕赤酵母外源基因表达系统研究进展[J].生物技术通报,2002,4:7-11.
    [57]Pisulewska E,Pisulewski PM.Trypsin inhibitor activity of legume seeds(peas,chickling vetch,lentils,and soya beans) as affected by the technique of harvest [J].Anita Feed Sci Technol,2000,86(3-4):261-265.
    [58]Stelter-Stevenson WG,Aznavoorian S,Liotta LA.Tumor cell interactions with the extracellular matrix during invasion and metastasis[J].Annu Rev Cell Biol,1993,9:541-573.
    [59]Chambers AF,Matrisian L.Changing views of the role of matrix metallo-proteinases in metastasis[J].J Natl Cancer Inst,1997,89:1260-1270.
    [60]Baragi VM,Shaw BJ,Renkiewicz RR,et al.A versatile assay for gelatinase using succinylated gelatin[J].J Matrix Biology,2000,19(3):267-273.