基于灰色系统理论的电力设备全寿命周期成本评估及模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力工业的迅速发展,电力设备的投资不断增加。实现对电力设备成本的有效控制,关系着电力工业的健康发展。然而,目前在对电力设备成本模型的研究中,只考虑了设备的初期投入成本,忽视了设备的运行维护成本,而这一部分在整个设备投资中占有非常重要的份额,因此,对电力设备的成本模型进行研究具有重要的经济价值。
     全寿命周期成本(Life Cycle Cost,LCC)分析是从项目的长期经济效益出发,全面考虑设备或系统的购置、安装、运行、维修、更新,直至报废的全过程,使LCC最小的一种理论和方法。LCC是一种系统分析方法,追求的是设备一生所耗资源最节省。
     但是在LCC的分析中,通常只考虑了如何降低电力设备的成本,而忽视了随之产生的电力设备效能的变化,然而,电力设备效能的实现是保障电力系统安全稳定运行的基础。因此,需要综合考虑电力设备的费用和效能,以评估LCC模型的可行性。
     传统的LCC决策和费用-效能评估方法的应用前提,是已知大量的历史数据;而在实际应用中,很多数据是难以获取的。灰色系统理论可以在信息不充分的条件下,取得尽可能准确的分析结果。因此,本文提出将灰色系统理论运用到电力设备LCC的分析和费用-效能评估中。主要研究工作如下:
     ①探讨了电力设备LCC组成部分的内容和特点,比较了几种常用的LCC估算方法,指出这几种估算方法在数据较少的情况下,都不能对LCC进行较准确的估算。
     ②研究了电力设备LCC的定量估算模型。在将电力设备LCC分为一次性投资费用和运行维护费用的基础上,将瞬时值计算引入到一次性投资费用的分析中,并提出将基于灰关联加权组合的预测理论及最大关联度原则引入到运行维护费用的分析中,综合分析这两部分,估算最小LCC。
     ③分析了电力设备费用-效能评估的意义。针对电力设备费用-效能评估指标具有模糊性和灰色性的特点,提出基于灰色模糊的费用-效能评估方法。通过三角隶属度函数描述评估因素与评估等级间的模糊关系,并引入点灰度描述模糊关系的不可信程度。在此基础上进行灰色模糊综合评估,得到更贴近实际的评估结果。
     ④算例验证了论文所提方法的有效性。
Along with the quick development of electric power industry, electric power equipment's investment increases unceasingly. Carry out the active control of electric power equipment cost, relates to electric power industry's healthy development. However, in the research of electric power equipment’s cost model currently, the initial period invested cost of equipment has been considered only, but the running and sustaining cost of equipment has been neglected, although this part holds a very important share in the entire equipment investment, therefore, the research on electric power equipment’s cost model has an important economic value.
     Life Cycle Cost(LCC) analysis is an idea if considering item’s long-term economy benefit, which makes LCC minimum if all things considered such as purchasing, fixing, running, sustaining, updating and discarding of equipment or system. The LCC is a kind of system analysis method, which tries to make the long cost come to its minimum point.
     But in LCC analysis, the way how to reduce electric power equipment cost has been considered, but the changes of electric power equipment effectiveness which produce along with it have been neglected, however, electric power equipment effectiveness's realization is the foundation that guarantees safe and steady operation of electric power system. So the cost and the effectiveness of electric power equipment are need to be considered comprehensively, and they can use to assess the feasibility of LCC model.
     The applied premise of the traditional methods of LCC decision and cost-effectiveness assessment is that a huge amount of historical data has been already known, but it’s difficult to receive so much data in practical application. Under the premise that the information is insufficient, the grey system theory can get accurate analysis result as far as possible. So the paper proposes applying grey system theory to carry on the analyzation of LCC and cost-effectiveness assessment for electric power equipment. The main research works in this paper are as follows:
     ①The paper discusses the content and the characteristic of every part of electric power equipment LCC, compares among several LCC estimation methods which are used commonly, points out that these estimation methods cannot estimate to LCC accurately in the situations that data is little.
     ②The paper studies the quantitative estimation model of electric power equipment’s LCC. On the basis that the electric power equipment’s LCC is set off one-off investment cost and running and sustaining cost,the paper introduces the instantaneous value calculation into the analyzation of one-off investment cost, and introduces the forecasting theory based on grey relational weighing combination and the most relational degree principle into the analyzation of running and sustaining cost, estimates the minimum LCC by analyzing the two parts comprehensively.
     ③The paper analyzes the meaning of electric power equipment’s cost-effectiveness assessment. Aiming at the feature that the factors of electric power equipment’s cost-effectiveness assessment are grey and fuzzy,the paper proposes a cost-effectiveness’s assessment method based on grey fuzzy. The triangular membership function is built up to describe the fuzzy relation between assessment factors and assessment grades, the unlikelihood extent of fuzzy relation is described by leading in grey scale value of pixel. On this basis the grey fuzzy comprehensive assessment is conducted, and the assessment result more near to the practice is achieved.
     ④Validate the validity of method proposed in this paper by cases.
引文
[1]邹江.全生命周期工程造价理论在电力工程造价管理中的运用[J].技术与管理, 2005(6):47-49.
    [2]曾庆禹.变电站的寿命周期成本与新技术发展分析[J].中国电力, 2000, 33(12):35-38.
    [3] White. Robert V. Cost Effective Embedded Energy Systems for Outdoor Equipment[C]. INTELEC-26th Annual International Telecommunications Energy Conference, 2004: 425-428.
    [4] Deng J. Control Problems of Grey Systems[J]. Systems & Control Letters, 1982, 1(5): 288-294.
    [5]金家善,史秀健,吴奕亮. LCC技术应用中的问题分析及建议[J].上海电力, 2004(4):280-284.
    [6]帅军庆.全寿命周期成本管理是公司可持续发展的重要举措[J].上海电力, 2004(3): 177-178.
    [7]日比宗平.景星.确立研究LCC的方法-寿命周期费用评估法[J].设备工程师, 1986(4):39-43.
    [8]设备寿命周期费用委员会.设备寿命周期费用讲座(6)[J].中国设备管理, 1995(12):42-43.
    [9] Michaels J V, Wood W P. Design To Cost[M]. New York: John Wiley&Sons, 1989.
    [10] Earles D R. Design to Operation and Support Costs[C]. Proceedings of the 1974 Annual Reliability and Maintainability Symposium, 1974: 149-153.
    [11]罗云,张俊迈,吴奕亮,等.重视设备寿命周期费用技术的研究与应用[J].中国设备工程, 2003(1):11-13.
    [12] Meyer. Christoph, De Doncker. Rik W. LCC Analysis of Different Resonant Circuits and Solid-State Circuit Breakers for Medium-Voltage Grids[J]. IEEE Transactions on Power Delivery, 2006, 21 (3): 1414-1420.
    [13] Niwa. Mamoru, Kato. Takeyoshi, Suzuoki. Yasuo. Life-Cycle-Cost Evaluation of Degradation Diagnosis for Cables[C]. 2005 International Symposium on Electrical Insulating Materials, 2005 (3): 737-740.
    [14]张怡,腾乐天,凌平.浅析LCC管理在上海电力系统的应用[J].上海电力, 2004(3):179-181.
    [15] Rivera Rodriguez. Gabriel A, O'Neill-Carrillo. Efrain. Economic Assessment of Distributed Generation using Life Cycle Costs and Environmental Externalities[C]. 37th Annual North American Power Symposium, 2005: 412-419.
    [16]韩天祥,黄华炜,陆一春. LCC管理技术在国外电力系统的研究与应用[J].上海电力, 2004(3):192-194.
    [17] Green. Anthony. Life Cycle Costing for Batteries in Telecom Applications[C]. Proceedings of the 1998 20th International Telecommunications Energy Conference, 1998: 1-7.
    [18]陈奕善. LCC技术在火电厂的应用[J].上海电力, 2004(3):270-271.
    [19]涂延军.飞机飞控系统LCC和系统效能分析与评论[M].西北工业大学, 2003年3月.
    [20]设备寿命周期费用委员会.第五届年会论文集, 2002. 05:96-100.
    [21]吴奕亮,金家善,辜健,等.寿命周期费用技术及其应用要点[J].上海电力, 2004(4):273-280.
    [22]腾乐天,凌平,黄玉,等.泰和变电站220kVGIS设备LCC模型和计算[J].中国设备工程, 2005(6):5-7.
    [23]崔剑仇.“新型工业化道路”中若干重要理念和实践[J].上海电力, 2004(3):239-241.
    [24] Brophy. James M, Erickson. Lonny J. Cost-effectiveness of Drug-eluting Coronary Stents in Quebec, Canada[J]. International Journal of Technology Assessment in Health Care, 2005, 21(3): 326-333.
    [25] Walker. W. E. POLSSS: Overview and Cost- effectiveness Analysis[J]. Safety Science, 2000, 35(1): 105-121.
    [26]李凡,姚光仑.最优线性分派法的防空武器系统费效分析[J].火力与指挥控制, 2005(30):95-97.
    [27] Amirteimoori. Alireza, Kordrostami. Sohrab, Rezaitabar. Aliakbar. An Improvement to the Cost Efficiency Interval: A DEA-based Approach[J]. Applied Mathematics and Computation, 2006, 181(1): 775-781.
    [28]顾晓辉,王晓鸣,赵有守.反直升机智能雷战斗部研制费用/效能分析[J].火力与指挥控制, 2002, 27(3):54-56.
    [29]熊云峰,蔡振雄,左德华.船舶设备费用-效能的多层次灰关联综合评价[J].造船技术,2006(2):1-3.
    [30]高军,酆明.仓库机械设备的综合评价模型[J].军械工程学院学报, 1998, 10(2):40-45.
    [31] Liang. Qing-Wei, Song. Bao-Wei, Pan. Guang. Fuzzy ideal point method for estimation of life cycle cost and effectiveness of torpedo weapon system[J]. Binggong Xuebao/Acta Armamentarii, 2006, 27(1): 137-140.
    [32] Yang. Hong-Tzer, Liang. Tian-Chyi, Shih. Kuang-Rong, et al. Power System Yearly Peak Load Forecasting: a Grey System Modeling Approach[C]. Proceedings of The 1995 International Conference on Energy Management and Power Delivery, 1995(1): 261-266.
    [33] Gaing. Zwe-Lee, Leou. Rong-Ceng. Optimal Grey Topological Predicting Approach to Short-term Load Forecasting in Power System[C]. 2002 IEEE Power Engineering SocietySummer Meeting, 2002(3): 1244-1250.
    [34]牛东晓,陈志业,邢棉,等.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报, 2002, 22(1):29-32.
    [35] Taniguchi. Yasuhiko, Dong. M, Yan. Z. Fault Diagnosis of Power Transformer based on Model-diagnosis with Grey Relation[C]. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, 2003(3): 1158-1161.
    [36]李俭,孙才新,陈伟根,等.基于灰色聚类分析的充油电力变压器绝缘故障诊断的研究[J].电工技术学报, 2002, 17(4):80-83.
    [37]任震,万官泉,黄金凤,等.电力系统可靠性原始参数的改进预测[J].电力系统自动化, 2003, 27(4):37-40, 81.
    [38]王遂,任震.基于最优有效度的电力系统可靠性原始参数的线性组合预测模型[J].继电器, 2007, 35(6):30-33, 67.
    [39] Qiu. Weijie, Hu. Mingli. Grey Control System and It's Research on Elastic Coefficient of Electricity Consumption in China[C]. 2005 IEEE International Conference on Industrial Technology, 2005: 677-681.
    [40]仇伟杰,张炜.中国电力生产灰色动态波动周期研究[J].中国电力, 2006, 39(9):63-66.
    [41]仇伟杰,温武.基于三角白化函数的中国电力工业发展水平评估[J].华北电力大学学报, 2006, 33(3):101-104.
    [42]肖智宏,周晖,朱启晨.基于灰色预测控制算法的发电机最优励磁控制[J].电网技术, 2006, 30(5):81-85.
    [43] Li Wang. Damping Enhancement of Generator Oscillations using Gray Model Forecast Control (GMFC) [C]. Proceedings of 1998 International Conference on Power System Technology, 1998(2): 819-823.
    [44]滕乐天,陈红兵,王怡风. LCC在设备采购中的应用实践[J].华东电力, 2007, 35(10):27-29.
    [45] Mileham A R, Currie G C, MilesA W, et al. A Parametric Approach to Cost Estimation at the Conceptual Stage of Design[J]. Journal of Engineering Design, 1993, 4 (2): 117-122.
    [46]陈玉波,张柳,曲长征.产品LCC估算模型研究及仿真分析[J].计算机仿真, 2005, 22(9): 73-75, 102.
    [47]帕尔·G,拜茨·W.工程设计学[M].冯培恩,译.北京:机械工业出版社, 1992.
    [48] Seo. K. -K, Park. J. -H, Jang. D. -S, et al. Approximate Estimation of the Product Life Cycle Cost using Artificial Neural Networks in Conceptual Design[J]. International Journal of Advanced Manufacturing Technology, 2002, 19(6): 461-471.
    [49] Ong, N. S. Activity-based Cost Tables to Support Wire Harness Design[J]. InternationalJournal of Production Economics, 1993, 29(3): 271-289.
    [50]张暴暴.制造产品报价及其智能集成系统研究[M].大连理工大学, 1999.
    [51]谢红胜,吴春诚,吴相林,等.基于威布尔分布的水电设备费用模型研究[J].华中科技大学学报, 2006, 34(9):54-56.
    [52]韦康南,姚立纲,吴志欢.基于灰色理论的产品寿命预测研究[J].计算机集成制造系统, 2005, 11(10):1491-1495.
    [53]方华元,胡昌华,陈伟.现场寿命数据分布类型识别方法的研究[J].电光与控制, 2005, 12(6):77-79, 85.
    [54]朱常青,王秀和,张鑫,等.基于灰关联加权组合模型的电力负荷预测研究[J].电力系统及其自动化学报, 2006, 18(2):79-81.
    [55]王超,王金.机械可靠性工程[M].北京:冶金工业出版社, 1992.
    [56]贾立雄,陈丽娟,胡小正. 2006年全国输变电设施和城市用户供电可靠性分析[J].中国电力, 2007, 40(5):1-7.
    [57]卜广志,张宇文.基于灰色模糊关系的灰色模糊综合评估[J].系统工程理论与实践, 2002(4):141-144.
    [58]谭跃进,陈英武,易进先.系统工程原理[M].长沙:国防科技大学出版社, 1999.
    [59] Farghal. S. A, Kandil. M. S, Elmitwally. A. Quantifying Electric Power Quality via Fuzzy Modeling and Analytic Hierarchy Processing[J]. IEE Proceedings: Generation, Transmission and Distribution, 2002, 149(1): 44-49.
    [60]张俊.基于全寿命周期成本(LCC)的变电站建设的决策分析[M].重庆大学, 2007.