用户名: 密码: 验证码:
发卡式DNA电化学发光生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因结构与基因功能研究的不断深入已迅速推动了人类疾病的DNA诊断及基因治疗的研究。基因DNA分子序列的微小改变,基因突变及多态性如一个或几个核苷酸的取代、缺失或增多,就会导致遗传性状的改变或各种疾病的出现。分子信标是一种由寡聚核酸形成的发夹型分子,它包括一个环(loop)—干(stem)结构。这种DNA探针有很高的杂交特异性。分子信标因具有灵敏度高,特异结合性好等优点而被广泛应用于生物学和生物分析领域。在注重功能基因研究的后基因组时期,分子信标将会被更多地应用于基因突变引起的疾病的研究、活细胞中DNA的检测、蛋白质的检测及生物芯片研究等。大规模的基因检测要求建立更简单、快速、廉价、微型化的分析装置。许多新的生物技术的开发,为发展高灵敏度、高特异性的基因分析检测方法注入了活力,其中利用DNA双链的碱基互补配对原则发展起来的各种DNA生物传感技术,受到生物分析工作者的高度重视。
     电化学发光是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分之间进行化学反应而产生的一种光辐射。根据电化学发光的强度进行的分析方法称为电化学发光分析法。该方法具有化学发光法的灵敏度高、线性范围宽和仪器简单等优点,也具有电化学法容易控制等优点。电化学发光DNA生物传感器因其灵敏度高起而使其研究受到人们的关注。但是,现报道电化学发光DNA生物传感器存在背景信号大或目标物需要修饰等缺点。
     本论文的目的是探索研究以发卡式DNA为分子识别物质,以钌联吡啶衍生物为电化学发光信号物质,构建高选择性简单的电化学发光DNA生物传感器的可行性,研究发卡式DNA探针的结构对传感器选择性的影响。
     本论文由绪论、研究报告两部分组成。第一部分为绪论,介绍了DNA传感器原理、分类,总结了电化学发光分析体系和分析方法特点,分子信标的特性,综述了DNA检测方法的研究进展和应用,最后阐述了本论文的研究目的和内容。第二部分为研究报告,由两部分组成。研究报告的第一部分为发卡式DNA电化学发光生物传感器制作和基本性能的研究。提出用二(2,2'-联吡啶)(2,2'-吡啶-4,4'-二碳酸)琥珀酰胺钌(Ru(bpy)_2(dcbpy)NHS)标记发卡式DNA,制得探针Ru(bpy)_2(dcbpy)NHS-hairpin-DNA,将探针固定在金电极上制得电化学发光传感器,与待测的目标DNA杂交,然后在含有三丙胺(TPA)的杂交缓冲溶液中施加电压,记录电化学发光信号,通过电化学发光信号的变化对目标DNA进行检测。当不存在互补ss-DNA时,探针处于闭合状态,标记物钌联吡啶离电极很近,产生强的电化学发光信号;存在互补序列时,探针与目标ss-DNA发生杂交发应,环状结构被打开,形成刚性的直链ds-DNA,标记物远离电极,电化学发光强度降低。试验结果表明,发卡式DNA为探针与传统的直链DNA探针检测相比,可以极大的提高电化学发光传感器的选择性;电化学发光强度与目标DNA浓度的负对数在2.7×10~(-10)mol L~(-1)~5.4×10~(-6)mol L~(-1)范围内分段成线形关系,检出限为9.0×10~(-11)mol L~(-1),对1.0×10~(-9)mol L~(-1)浓度的靶DNA进行7次测定,相对标准偏差为3.9%。
     研究报告的第二部分研究了不同发卡式DNA电化学发光生物传感器的选择性问题。研究了电化学发光传感器对单碱基错配序列以及多碱基错配序列的识别,发现本文设计的传感器能够将单碱基错配序列从互补序列中区分开来。还研究了固定有不同环长探针传感器的选择性,将不同长度发卡式DNA的探针固定于金电极上,与待测目标进行杂交后,将杂交后的电极作为工作电极,在含有TPA的溶液中进行电化学发光测量。实验结果表明,探针中DNA的长度影响其在电极表面的固定量,且制作的传感器可以很好的检测多碱基错配系列。选择合适的发卡式DNA,提高传感器的选择性。
     本研究工作主要以电化学发光为检测手段,结合发卡式DNA、DNA杂交技术、自组装技术制作了一种新的电化学发光DNA传感器。本论文的研究结果表明,以发卡式DNA为分子识别物质,以钌联吡啶衍生物为电化学发光信号物质,构建高选择性简单的电化学发光DNA生物传感器是可行的。发卡式DNA的使用可以提高电化学发光DNA传感器的选择性和灵敏度。这项工作将为电化学发光DNA传感器的研究提供一种新的思路,将促进电化学发光DNA传感器研究的发展。
Gene mutations and polymorphisms due to small genetic changes in DNA sequence, such as the replacement of one or several nucleic acid loss or increased, will lead to genetic change or the emergence of various diseases. Therefore, the analysis of human blood, body fluids and other specific DNA sequence, can be used to confirm the source of infection. DNA hairpins have been found to exhibit extraordinary stability, high selectivity and specificity compared to similar assays performed using single-stranded DNA. Wide-scale genetic testing requires the development of easy-to-use, fast, inexpensive, miniaturized analytical devices. Biosensors offer a promising alternative for nucleic acid assays duo to fast, cheap and simple.
     Electrogenerated chemiluninescence (ECL) is the luminescence generated by relaxation of exited state molecules that are produced during an electrochemically initiated reaction. The ECL method allows a highly sensitive detection and control the ECL the reaction through modulation of applied potential without expensive instrumentation. The generation of light in the vicinity of the electrode gives better spatial control for the sensitive detection of analytes. High sensitivity can be achieved by optimizing the material, size and position of the electrodes. Molecular beacon is a kind of new fluorescence nucleic acid probe with a high sensitivity and specificity. The molecular beacon technology by its operation simple, high sensitivity and specificity may be carried on the real-time quantitative determination to the nucleic acid, and living specimen analysis. It can be used not only in the widespread application in biology research, but also in clinical applications.
     This thesis includes review section and research section. In the review section, the principles and characteristics of different kinds of DNA biosensors are summarized. The basic principles, characteristics and systems of ECL, and characteristics of molecular beacon are introduced. The developments in applications of the molecular beacon in DNA sensors are reviewed, and the purpose and content of this thesis are presented. The aim of present work is to develop a high sensitivity and selectivity DNA biosensor. We combine the merit of hairpin DNA and the ECL technique with the nucleic acid hybridization technology to develop a new ECL sensor based on hairpin. It will be able to be used in the detection of DNA hybridization and mismatch rapidly and simply.
     The research section contains two subunits. In the first subunit, a novel sensitive ECL sensor for the detection DNA hybridization based on hairpin probes was fabricated. The ECL sensor - "switch off" mode - was fabricated by self-assembling the ECL probe on a gold electrode through thiol group at its 5' terminal. In the absence of target single strand DNA (ss-DNA), the ECL probe on the electrode was in the folded configuration and its termini were held in close proximity to the electrode, thus resulting in a strong ECL signal. In the presence of target ss-DNA, the loop of the ECL probe on the electrode was converted into a rigid and linear double helix configuration due to a hybridization with a complementary target ss-DNA, allowed to remove the tag of Ru(bpy)_2(dcbpy)NHS away from the electrode surface and thus the ECL signal was dropped off. The decreased ECL signal was found to be related to the concentration of complementary target ss-DNA in a range from 2.7×10~(-10) mol L~(-1) to 5.4×10~(-6) mol L~(-1) with a detection limit of 9×10~(-11) mol L~(-1).
     In the second subunit, the effect of the probe with different loops on the selectivity of ECL biosensors was investigated. It was found that mismatch target DNA can be discriminated from complementary one. This work demonstrated that the selectivity and specificity of ECL-based biosensor can be greatly improved using a hairpin DNA suitable of stem and loop length as a recognition element.
引文
[1] Waston J D, Crick F H C. Molecular regularly mechanisms in protein synthesis [J], Nature, 1953,171:737-739.
    [2] Dubertret B, Calame M, Libchaber A. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nat. Biotechnol, 2001, 19, 365-370.
    [3] Giesendorf B A, Vet J A, Tyagi S, et al. Molecular beacons: a new approach for semiautomated mutation a nalysis [J]. Clin. Chem, 1998,44: 482-486.
    [4] Kostrikis L G, Tyagi S, Mhlanga M M, Hoo D, et al. Spectral genotyping of human alleles [J]. Science, 1998,279: 1228-1229.
    [5] Nazarenko I A, Bhatnagar S K, Hohman R J. A closed tube format for amplification and detection of DNA based on energy transfer [J]. Nucleic Acids Res, 1997,25:2516-2521.
    [6] Liu J, Feldman P, Chung T D. Real-time monitoring invitro transcription using molecular beacons [J]. Anal. Biochem, 2002, 300: 40-45.
    [7] Sokol D L, Zhang X, Lu P O. Real time detection of DNA.RNA hybridization in living cells [J]. Proc. Natl. Aced. Sci, 1998,95: 11538-11543.
    [8] Periette J, Tan W. Real-tire monitoring of intracellular mRNA hybridization inside single living cells [J]. Anal. Chem, 2001, 73: 5544-5550.
    [9] Li J J, Fang X H, Schuster S M, Tan W. Molecular beacons: novel approach to detect protein DNA interactions [J]. Angew. Chem. Int. Ed, 2000, 39: 1049-1052.
    [10] Tyagi S, Kramer F R. Molecular Beacons: Probes that Fluoresce Upon Hybridization [J]. Nat. Biotechnol, 1996, 14: 303-308.
    [11] 王怡瑾, 王宏, 聂立波, 何跃农. 分子信标技术[J]. 化学通报, 2004, 12:912-918.
    [12] Tyagi S, Marras S A E, Kramer F R. Wavelength-shifting molecular beacons [J]. Nat. Biotechnol, 2000, 18: 1191-1196.
    [13] Bonnet G, Tyagi S, Libchaber A, et al. Thermo dynamic basis of the enhanced specificity of structured DNA probes [J]. Proc. Natl. Acad. Sci, 1999, 96: 6171-6176.
    [14] Tung C H, Mahmood U, Bredow S, et al. In vivo imaging of proteolytic enzymeactivity using a novel molecular reporter [J]. Cancer Res, 2000, 60: 4953-4958.
    [15] Bonnet G, Krichevsky O, Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops [J]. Proc. Natl. Aced. Sci, 1998, 95: 8602-8606.
    [16] Mhlanga M M, Malmberg L. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR.Methods [J]. Proc. Natl. Aced. Sci, 2001, 25: 463-471.
    [17] Chen W, Martinez G, Mulchandani A. Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella [J]. Anal. Biochem, 2000, 280: 166-172.
    [18] Fang Y, Wu W H, Pepper J L, et al. Comparison of real-time quantitative PCR with molecular beacons to nested PCR and culture methods for detection of Mycobacterium avium subsp.paratuberculosis in bovine fecals amples [J]. J. Clin. Microbiol, 2002, 40: 287-291.
    [19] Fortin N Y, Mulchandani A, Chen W. Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichiacoil O 157:H7 [J]. Anal. Biochem, 2001, 289: 281-288.
    [20] Lewin S R, Vesanen M, KostrikisL, et al. Use of real-time PCR and molecular beacons to detect virus replication in humanim munodeficiency virus type 1-infected individuals on prolonged effective an6retroviral therapy [J]. J. Virol, 1999, 73: 6099-6103.
    [21] Clark L C, Lyons and Ann N Y [J]. Acad. Soi, 1962, 109: 29-45.
    [22] Frost M C, Meyerhoff M E. Implantable chemical sensors for real-time clinical monitoring progress and challenges [J]. Curr. Opin. Chem. Biol, 2002, 6(5): 633-636.
    [23] Updike S J, Hicks G P. Sensitivity of electrochemical enzyme sensor for glucose determination [J]. Nature, 1967, 214: 986-988.
    [24] 郭黎平,李星全.聚吡咯为基底的葡萄糖酶微电极的研究[J].分析化学,1992,20(7):828-830.
    [25] 柴欣生,张国雄.以二茂铁修饰石墨电极的葡萄糖传感器的研究[J].分析化学,1991,19(7):820-822.
    [26] 金利通,刘海鹰,方禹之.Nafion-甲基紫精修饰电极抗坏血酸氧化酶生物传感器的研究[J].分析化学,1992,20(5):515-519.
    [27] Gardies F, Jaffrozic-Renault N, Martelet C, et al. Micro-enzyme field effect transistor sensor using direct covalent bonding of urease [J]. Anal. Chim. Acta, 1990, 231(2): 305-308.
    [28] Taguchi H, Ishihara N, Shimabayashi Y, et al. Biosensor for peptide determination constructed by immobilizing proteolytic enzymes on coated-wire electrodes [J]. Anal. Chim. Acta, 1990, 239: 13-17.
    [29] Divies C. Ethanol Oxidation by an Acetobacter Xylinum Microbial Electrode [J]. Ann. Microbial, 1975, 26: 175-186.
    [30] 李辉,迪丽拜尔,邓家祺.用氧电极结合枯草杆菌M45(Rec)和H17(Rec)快速鉴别金属离子的致癌性[J].高等学校化学学报,1994,15(11):1620-1624.
    [31] 邓家祺,孔继烈,姜忠宝,蔡武成.原电池式金电极微生物生化需氧量传感器[J].化学世界,1991,10(3):25-28.
    [32] Janata J. An immunoelectrode [J]. J. Am. Chem. Soc, 1975, 97(10): 2914-2916.
    [33] Rechnitz G A. Biosensor using lettuce-seed meal for L-glutamine [J]. Chem. Eng. News, 1978, 56 (41): 16-21.
    [34] 高志贤,晁福寰.压电式脱氧核糖核酸传感器的研究进展[J].分析化学,2000,8(11):1421-1427.
    [35] 曹晓红,莫志宏.应用压电型生物传感器研究寡核苷酸在石英金膜表面的固定[J].四川轻化工学院学报,2002,15(4):47-50.
    [36] 叶为全,周康源,王君等.微型石英晶体生物传感器的研究[J].传感器技术,2000,19(4):7-10.
    [37] 秦自楷.压电石英晶体[M].北京:国防工业出版社,1980,68-112.
    [38] Sauerbrey G. The use of quartz oscillators for weighting thin layers and for microweighting [J]. Phys. Chem, 1959, 155: 206-222.
    [39] Mlilan K M, Saraullo A, Mikkelsen S R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode [J]. Anal. Chem, 1994, 66(18): 2943-2947.
    [40] Wang J, Cai X H, Rivas, et al. DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodefeciency virus [J]. Anal. Chem, 1996, 68(15): 2629-2634.
    [41] Wang J, Gustavo R, Cai X H, et al. Sequence-specific electrochemical biosensing of Mtuberculosis DNA [J]. Anal. Chim. Acta, 1997, 337:41-48.
    [42] Takenaka S, Uto Y, Kondo H, et al. Electrochemically active DNA probes: detection of target DNA sequences at femtomole level by hight performance liquid chromatography with electrochemical detection [J]. Anal. Biochem, 1994, 218:436-443.
    [43] Hafsa K Y, Bouchra M. Electrochemical biosensing of DNA hybridization by ferrocenyl groups functionalized polypyrrole [J]. Anal. Chim. Acta, 2002, 469: 85-92.
    [44] De Lumley-woodear T, Caruana D J, Campbell C N. Reactive Electrophoretic Activation of a Microelectrode for Enzyme-Amplified Recognition and for Melting-Temperature Determination of 105 Copies of a Simple Oligonucleotide [J]. Anal. Chem, 1999, 71: 394-398.
    [45] Laurent A, Celine G, Pierre B. Gold Nanoparticle-Based Quantitative Electrochemical Detection of Amplified Human Cytomegalovirus DNA Using Disposable Microband Electrodes [J]. Anal. Chem, 2001, 73: 4450-4456.
    [46] Palecek E, Lukasov E, Jelen F, Vojtiskova M. Electrochemical analysis of polynucleotides [J]. Bioelectrochem Bioenerg, 1981, 8: 497-506.
    [47] Wang J, Xu D K, Kawde A N, et al. Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization [J]. Anal. Chem, 2001, 73:5576-5581.
    [48] Cai H, Wang Y Q, He P G, et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label [J]. Anal. Chim. Acta, 2002,469: 165-172.
    [49] Cai H, Xu Y, Zhu N N, et al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label [J]. Analyst, 2002, 127: 803-808.
    [50] Fergnaon J A, Boles T C, Adams C P, et al. A fiber-optic DNA biosensor microarray for the analysis of gene expression [J]. Nat. Biotechnol, 1996, 14(13): 1681-1684.
    [51] Piunno P A E, Krull U J, Hudson R H E, et al. Fiber optic biosensor for fluorormertric detection of DNA hybridization [J]. Anal. Chim. Acta, 1994, 288: 205-214.
    [52] Piunno P A E, Krull U J, Hudson R H E, et al. Fiber Ooptic DNA sensor for fluoromertric nucleic acid determination [J]. Anal, chem, 1995, 67: 2635-2641.
    [53] Ferguson J A, Boles T C, Adams C P, et al. A fiber optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol, 1996, 14 (13): 1681-1687
    [54] 张天浩,张春平,张光寅.DNA芯片制作原理及其杂交信号检测方法[J].生物工程进展,2000,202(2):64-68.
    [55] Watts H J, Yeung D, Parkes H. Real-time detection and quantification of DNA hybridization by an optical biosensor [J]. Anal. Chem, 1995, 67: 4283-4289.
    [56] Pollard O D, Hawkins E, Yeung D, et al. Immunoassays and nucleic acid detection with a biosensor based on surface plasmon resonance [J]. Annl. Bio. Clin, 1990, 48(9): 642-648.
    [57] Helen J W, Debra Y, Helen E Real-time detection and quantification of DNA hybridization by an optical biosensor [J]. Anal. Chem, 1995, 67: 4283-4291.
    [58] Bianchi N, Rutigliano C, Tomassetti M, et al. Biosensor technology and surface plasmon resonance for real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction [J]. Clin. Diagn. Virol, 1997, 8(3): 199-205.
    [59] Nilsson P, Persson B, Larsson A, et al. Detection of mutations in PCR products from clinical samples by surface plasmon resonance [J]. J. Mol. Recongnit, 1997, 10(1): 7-17.
    [60] Gotoh M, Hasegawa Y, Shinohara Y, et al. A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor [J]. DNA Res, 1995, 2(6): 285-290.
    [61] Zhang G, Zhou Y, Yuan J. A chemiluminescence fiber-optic biosensor for detection of DNA hybridization [J]. Anal. Lett, 1999, 32(14): 2725-2736.
    [62] 姜雄平,许丹科,刘耀清,马立人.化学发光核酸传感器的研制[J].分析化学,2000,28(1):12-16.
    [63] Pavlov V, Xiao Y, Arnon R G D, et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels [J]. Anal. Chem, 2004, 76(7): 2152-2156.
    [64] 何治柯,罗庆尧,曾云鹗.化学发光分析进展[J].分析测试学报,1997,16(1):72-84.
    [65] Pang D W, AbruAa H D. Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules [J]. Anal. Chem, 1998, 70: 3162-3169.
    [66] Zhao Y D, Pang D W, Wang Z L. DNA-modified electrodes. Part 2. Electrochemical characterization of gold electrodes modified with DNA [J], Electtonal. Chem, 1997, 431 : 203-209.
    [67] Wang J, Cai X H, Rivas G, et al. DNA electrochemical biosensor for the detection of short DNA sequence related to the human immunodeficiency virus [J]. Anal. Chem, 1996, 68(15): 2629-2634.
    [68] Erdem A, Kerman K, Meric B. DNA Electrochemical Biosensor for the Detection of Short DNA Sequences Related to the Hepatitis B Virus [J]. Electroanalysis, 1999,11:586-588.
    [69] Wang J, Rivas G, Cai X H, et al. Adsorption and detection of peptide nucleic acids at carbon paste eletrodes [J]. Electroanalysis, 1997, 9(2): 120-124.
    [70] Fojta M, Palecek E. Supercoiled DNA-modified mercury electrode: A highly sensitive tool for the detection of DNA damage [J]. Anal. Chim. Acta, 1997, 342: 1-12.
    [71] Marrazza G, Chianella L, Mascini M. Disposable DNA electrochemical sensor for hybridization detection [J]. Biosens. Bioelectron, 1999,14: 43-51.
    [72] Mascini M, Palchetti L, Marrazza G. Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Developmen [J]. Anal. Chem, 1997,69:2043-2049.
    [73] Xiao C D, Yang M, Sui S F. DNA-containing organized molecular structure based on controlled assembly on supported monolayers [J], Thin Solid Films, 1998, 327: 647-651.
    [74] Xu C, Cai H, He P G, Fang Y Z. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA [J]. Analyst, 2001, 126: 62-65.
    [75] Sastry M, Ramakrishnan V, Pattarkine M. Hybridization of DNA by Sequential Immobilization of Oligonucleotides at the Air-Water Interface [J]. Langmuir, 2000, 16:9142-9146.
    [76] Nuzzo R G, Dubois L H, Allara D L. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers [J]. J. Am. Chem. Soc, 1990, 112(2): 558-569.
    [77] Zhao Y D, Pang D W, et al. DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers [J]. Talanta, 1999, 49:751-756.
    [78] Hashimoto K, Ito K, Ishimori Y. Sequence-Specific Gene Detection with a gold Electrode Modifided with DNA probe and an Electrochemically Active Dye [J]. Anal. Chem, 1994, 66: 3830-3833
    [79] Maeda M, Mitsuhashi Y. DNA-immobilized gold electrode for DNA-binding drug sensor [J]. Analytical Sciences, 1992, 8: 83-84.
    [80] Tonya M H, Michael J T. Characterization of DNA Probes Immobilized on Gold Surfaces [J]. J. Am. Chem. Soc, 1997,119, 8916-8920.
    [81] Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons [J]. Anal. Chem, 1999,71: 5054-5059.
    [82] Fang X, Li J J, Tan W. Using molecular beacons to probe molecular interactions between lactate dehydrogenaseand single-stranded DNA [J]. Anal. Chem, 2000, 72: 3280-3285.
    [83] Brown L J, Cummins J, Hamilton A, et al. Molecular beacons attached to glass beads fluoresce upon hybridization to target DNA [J]. Chem. Commun, 2000, 621-622.
    [84] Steamersf J, Ferguson J A, Walt D R. Screening unlabeled DNA targets with random ordered fiber-optic gene arrays [J]. Nat. Biotechnol, 2000, 18: 91-94.
    [85] Du H, Strohsahl C M, Camera J, et al. Hybridization-Based Unquenching of DNA Hairpins on Au Surfaces [J]. J. Am. Chem. Soc, 2003,125: 4012-4013.
    [86] Du H, Strohsahl C M, Camera J, Krauss T D, et al. Sensitivity and Specificity of Metal Surface-Immobilized "Molecular Beacon" Biosensors [J]. J. Am. Chem. Soc, 2005,127:7932-7940.
    [87] Strohsahl C M, Du H, Miller B L, Krauss T D. Towards single-spot multianalyte molecular beacon biosensors [J]. Talanta, 2005, 67, 479-485.
    [88] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA [J]. Proc. Natl. Acad. Sci, 2003, 100: 9134-9137.
    [89] Lai R Y, Lagally E T, Plaxco K W, Heeger A J, et al. Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor [J]. Proc. Natl. Acad. Sci, 2006, 103: 4017-4021.
    [90] Jin Y, Yao X, Liu Q, Li J H. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator, Biosensors and Bioelectronics [J]. 2007,22: 1126-1130.
    [91] Steichen M, Herman C B. Electrochemical detection of the immobilization and hybridization of unlabeled linear and hairpin DNA on gold [J]. Electrochemistry Communications, 2005, 7:416-420.
    [92] Havery N. Luminescence during Electrolysis [J]. J. Phys. Chem, 1929, 33: 1456-1459.
    [93] Maloy J T, Prater K B, Bard A J. Electrogenerated chemiluminescence. V. Rotating-ring-disk electrode. Digital simulation and experimental evaluation [J]. J. Am. Chem. Soc, 1971, 93(23): 5959-5968.
    [94] Kuang S C, Takeshita T, Nakamura K, Hirota N. Electron paramagnetic resonance studies of the kinetics of the intramolecular cation migration process in alkali metal anthraquinone [J]. J. Am. Chem. Soc, 1972, 77(10): 708-713.
    [95] Bender A R, Briesen H V, Kreuter J, et al. Efficiency of nanoparticles as a carder system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro [J]. Antimicrobial Agent&Chemotherapy, 1996, 40 (6): 1467-1471.
    [96] Luo D, Saltzman W M. Enhancement of transfection by physical concentration of DNA at the cell surface [J]. Nat. Biotech, 2000, 18: 893-895.
    [97] Chan W C W, Nie S M. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science, 1998, 281(5385): 2013-2016.
    [98] Peng X, Manna L, Yang W, Wickham J, Scher E, et al. Shape control of CdSe nanocrystals [J]. Nature, 2000, 404(6773):59-61.
    [99] Mirkin C A, Taton T A. Materials chemistry Semiconductors meet biology [J]. Nature, 2000, 405(6787): 626-627.
    [100] Qhohosheane M, Santra S, Zhang P, Tan W H. Biochemically functionalized silica nanoparticles [J]. The Analyst, 2001, 126:1274-1278.
    [101] Li T, Moon J, Augusto A M, Mecholsky J J, et al. Preparation of Ag/SiO_2 Nanosize Composites by a Reverse Micelle and Sol-Gel Technique [J]. Langmuir, 1999, 15: 4328-4334.
    [102] 何晓晓,王柯敏,谭蔚红等.基于氨基化SiO_2纳米颗粒的新型基因载体[J].科学通报,2002,18:1365-1369.
    [103] 段菁华,王柯敏,谭蔚红等.新型有机荧光染料嵌合的核壳荧光纳米材料的研制[J].高等学校化学学报,2003,24(2):255-259.
    [104] He X X, Wang K M, Tan W H, et al. Photostable Luminescent Nanoparticles as Biological Label for Cell Recognition of System Lupus Erythematosus Patients [J]. J. Nanosci. Nanotech, 2002,2(3): 317-320.
    [105] Xie H, Yu Y H, Xie F, Lao Y Z, Gao Z. A Nucleic Acid Biosensor for Gene Expression Analysis in Nanograms of mRNA [J]. Langmuir, 2004, 76(14): 4023-4029.
    [106] Blackburn G F, Shan H P, Kenten J H, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clin. Chem, 1991, 37(9): 1534-1539.
    [107] Yan G H, Xing D, Tan S C. Sensitive immunomagnetic-electrochemiluminescent detection of p53 antibodies in human serum [J]. J Immunol Methods, 2004, 288, (122): 47-54.
    [108]Gatto M D L, Yu H, Bruno J G, et al. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor [J]. Biosensors Bioelectronics, 1995,10(6): 501-507.
    [109] Yu H, Bruno J G. Immunomagnetic-electrochemiluminescent detection of escherichia coli O157 and Salm onella typhim urium in foods and environmental water samp les [J]. Appl. Environ. Microbiol, 1996, 62(2): 587-592.
    [110] Tom I T, Lu I. Electrogenerated chemiluminescence determination of cefadroxil antibiotic [J]. Anal. Chim. Acta, 2001,422: 201-206.
    [111]Chen G N, Rong E L, Zheng F B, et al. Electrogenerated chemiluminscence for determination of indole and tryp tophan [J]. Anal. Chim. Acta, 1997, 341: 251-256.
    
    [112]徐国宝, 董绍俊. 电化学发光及其应用 [J]. 分析化学, 2001,25 (1): 103-108.
    [113] Liu J F Xing D, Shen X Y, et al. Electrochemiluminescence polymerase chain reaction detection of genetically modified organisms [J]. Anal. Chim. Acta, 2005, 537:119-123.
    [114]Karsten A F, Miloslav P, George G G. Recent application of electrogenerated chemiluminescence in chemical analysis [J]. Talanta, 2001, 54: 531-559.
    [115] Knight A W, Greenway G M. Indirect ion-annihilation electrogenerated chemiluminescence and its application to the determination of aromatic tertiary amines [J]. Analyst, 1995, 120: 1077-1082.
    [116] Fleet B, Keliher P N, Kirkbright G F. Some observations on the analytical usefulness of electrochemiluminescence for the determination of microgram amounts of aromatic hydrocarbons [J]. Analyst, 1969, 94: 847-854.
    [117] Ege D, Becker G W, Bard A J. Electrogenerated chemiluminescent determination of tris(2,2'-bipyridine)ruthenium ion (Ru(bpy)_3~(2+) at low levels [J]. Anal. Chem, 1984, 56: 2413-2417.
    [118] Jin Q G, Gray H B, Bard A J. Electrochemistry and electrogenerated chemiluminescence of tetrachlorotetrakis(trimethylphosphine) dimolybdenum [J]. J. Phys.Chem, 1986, 90: 3841-3844.
    [119] Wilson R., Schiffrin D .J. Chemiluminescence of Luminol Catalyzed by Electrochemically Oxidized Ferrocenes [J]. Anal. Chem, 1996, 68(7): 1254-1257.
    [120] Wang Y, Yeung E S. Indirect detection method for liquid chromatography based on electrogenerated luminal chemiluminescence [J]. Anal. Chim. Acta, 1992, 266(2): 295-300.
    [121] Preston J P, Nieman T A, An Electrogenerated Chemiluminescence Probe and Its Application Utilizing Tris(2,2'-bipyridyl)ruthenium(Ⅱ) and Luminol Chemiluminescence without a Flowing Stream [J]. Anal. Chim. Acta, 1996, 68 (6): 966-970.
    [122] Sakura S. Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode [J]. Anal. Chim. Acta, 1992, 262(1-2): 49-57.
    [123] Hercules D M, Lyte E E. Chemiluminescence from Reduction Reactions [J]. J. Am. Chem. Soc, 1966, 88: 4745-4746.
    [124] Leland J K, Bard A J. Electrogenerated chemiluminescence: a oxidative-reduction type ECL reaction sequence tripropylamine [J]. J. Electrochem. Soc, 1990, 137: 3127-3131.
    [125] Lin J M, Yamada M. Electrogenerated chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay [J]. Journal of Microchemical, 1998, 58(1): 105-116.
    [126] Tamamushi B, Akiyama H, Acridines. Notes on the chemiluminescence of dimethyldiacridylium-nitrate [J]. Trans. Faraday Soc, 1939, 35: 491-494.
    [127] Legg K D, Hercules D M. Electrochemically generated chemiluminescence of lucigenin [J]. J. Am. Chem. Soc, 1969, 91(8): 1902-1907.
    [128] Haapakka K E, Kankare J J. Electrogenerated chemiluminescence of lucigenin in aqueous alkaline solutions at a platinum electrode [J]. Anal. Chim. Acta, 1981, 130(2): 415-418.
    [129] 张棘,严风霞,王敏,方禹之.光泽精-H_2O_2-KCl中性非缓冲体系电生化学发 光行为及机理研究[J].光谱学与光谱分析,1995,15(1):109-113.
    [130] Sun Y G, Cui H, Lin X Q J. Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution [J]. Luminescence, 2001, 92(3): 205-211.
    [131] 郑行望.流动注射与化学修饰电极电化学发光分析研究.西南师范大学,2003.4
    [132] 庞代文,颜蔚.基因传感技术及目前存在的问题和发展对策[J].高等学校化学学报.2001,22(3):389-395.
    [133] Ramanathan K, Rogers K. A fluorescence based assay for DNA damage induced by styrene oxide [J]. Sensors and Actuators B, 2003, 91: 205-210.
    [134] Park S J, Taton T A, Mirkin C A. Array-Based Electrical Detection of DNA with Nanoparticle Probes [J]. Science, 2002, 295: 1503-1508.
    [135] Wang J, Musameh M, Lin Y. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors [J]. J. Am. Chem. Soc, 2003, 125: 2408-2417.
    [136] Xu X H, Yang H C, Mallouk T E, Bard A J. Immobilization of DNA on an Aluminum (Ⅲ) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection [J]. J. Am. Chem. Soc, 1994, 116: 8386-8388.
    [137] Hook F, Ray A, Norden B, Kasemo B. Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements [J]. Langmuir, 2001, 17: 8305-8308.
    [138] Yamaguchi S, Shimomura T. Adsorption, Immobilization, and Hybridization of DNA Studied by the Use of Quartz Crystal Oscillators [J]. Anal. Chem, 1993, 65: 1925-1929.
    [139] Peterson A W, Wolf L K, Georgiadis R M. Hybridization of Mismatched or Partially Matched DNA at Surfaces [J]. J. Am. Chem. Soc, 2002, 124: 14601-1406.
    [140] Williams D J, Hall K B. Thermodynamic Comparison of the Salt Dependence of Natural RNA Hairpins and RNA Hairpins with Non-Nucleotide Spacers [J]. Biochemistry, 1996, 35: 14665-14670.
    [141] Riccelli P V, Merante F, Leung K T, et al. Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes [J]. Nucleic Acid Res, 2001, 29: 996-100.
    [142] Terpetschnig E, Szmacinski H, Malak H, Lakkowicz J R. Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics [J]. Biophysical Journal, 1995, 68(1): 342-350.
    [143]Shimdzu T, Iyoda T, Izaki K. Phoroelectrochemical properies of bis(2.2'-bipyridine)(4,4'-dicarboxy-2,2'-bipyridine)ruthenlum(II) chioride[J]. J. Phys. Chem, 1985, 89(4): 642-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700