用户名: 密码: 验证码:
植物bZIP转录因子家族的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of bZIP Lineage Transcription Factors in Plant
  • 作者:王金英 ; 丁峰 ; 潘介春 ; 张树伟 ; 杨亚涵 ; 黄幸 ; 范志毅 ; 李琳 ; 王颖
  • 英文作者:WANG Jinying;DING Feng;PAN Jiechun;ZHANG Shuwei;YANG Yahan;HUANG Xing;FAN Zhiyi;LI Lin;WANG Ying;Agricultural College, Guangxi University;Horticultural Research Institute, Guangxi Academy of Agricultural Sciences;
  • 关键词:bZIP ; 转录因子 ; 胁迫应答 ; 信号传导 ; 植物发育
  • 英文关键词:bZIP;;transcription factors;;stress response;;signal transduction;;plant development
  • 中文刊名:热带农业科学
  • 英文刊名:Chinese Journal of Tropical Agriculture
  • 机构:广西大学农学院;广西壮族自治区农业科学院园艺研究所;
  • 出版日期:2019-06-15
  • 出版单位:热带农业科学
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金(No.31760564);; ‘广西八桂青年学者’专项经费资助;; 国家荔枝龙眼产业技术体系(No.CARS-33-10);; 广西自然科学基金(No.2017GXNSFAA198350、 2016GXNSFBA380036、 2018GXNSFAA050089、2018GXNSFAA294034);; 广西科技重大专项(No.桂科AA17204026);; 亚热带农业生物资源保护与利用国家重点实验室开放课题(No.SKLCUSA-b201811)
  • 语种:中文;
  • 页:42-48
  • 页数:7
  • CN:46-1038/S
  • ISSN:1009-2196
  • 分类号:Q943.2
摘要
植物bZIP转录因子是一类蛋白,在真核生物中广泛分布并且相对保守,其碱性区域高度保守,约包含20个氨基酸残基。根据bZIP结构的不同,可将其划分为10个亚族。不同亚族的转录因子行使不同的功能,主要包括表达植物种子贮藏基因、调控植物生长发育过程、进行光信号转导、预防病害、胁迫应答和ABA敏感性等各种信号的反应。本文主要介绍bZIP转录因子的分类、结构特征、功能多样性及其在不同植物中的分布及数量、参与的植物发育过程、次生代谢调控、生物与非生物胁迫应答及以非生物信号转导方面的研究进展,以期为进一步研究和利用bZIP转录因子提供参考。
        Plant bZIP transcription factors are a group of proteins that are widely distributed and relatively conserved in eukaryotes, among which the alkaline regions are highly conserved and contain about 20 amino acid residues. According to the bZIP structure, they can be divided into 10 subgroups. Transcription factors of different subgroups perform different functions, including expression of storage genes in plant seeds, regulation of plant growth and development, light signal transduction, disease prevention, stress response and ABA sensitivity. The bZIP transcription factors were reviewed in classification, structure,functional diversity, distribution and quantity in different plants, involvement in plant growth process,secondary metabolic regulation, biological and abiotic stress response, and biological signal transduction in order to provide reference for further research and utilization of bZIP transcription factors.
引文
[1] Glover J M,Harrison S C. Crystal structure of the heterodimeric bZIP transcription factor cFos-c-Jun bound to DNA[J]. Nature, 1995, 373(6 511):257–261.
    [2]龚道勇.慈竹bZlP和NRT基因克隆及功能初步研究[D].锦阳:西南科技大学,2018:5.
    [3]刘莉. DREBs,bZIP转录因子与植物抗旱性研究进展[J].浙江农业科学,2013(1):98-102.
    [4]朱倩. 4个bZIP转录因子在稻瘟病菌生长发育及致病过程中的功能研究[D].南京:南京农业大学,2014:5.
    [5]王德军.苹果bZIP转录因子MdbZIP48的克隆与基因功能分析[D].杨凌:西北农林科技大学,2018:5.
    [6] Marc J, Bernd W, Wolfgang DLr, et al. bZIP transcription factors in Arabidopsis[J].Trends in Plant Science,2002,7(3):106-111.
    [7] Luiz G G C,Diego M R P,Carlos G S. The role of bZIP transcription factors in green plant evolution:Adaptive features emerging from four founder genes[J]. Plos One,2008,3(8):1-14.
    [8] Silveira A B,Gauer L,Tomaz J P,Cardoso P R,et al. The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development[J]. Plant Science,2007,172:1148-1156.
    [9] Takahashi H, Kawakatsu T, Wakasa Y. A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response[J]. Plant Cell Physiol, 2012,53:144-153.
    [10] Thalor S K, Berberich T, Lee S S. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves[J]. PLOS One,2012,7(3):e33111.
    [11] Yoshida T,Fujita Y,Maruyama,K. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress[J].Plant Cell Environ,2015,38:35-49.
    [12]曹红利.茶树bZIP家族基因的非生物胁迫响应及C亚家族CsbZIP6和CsbZIP4的功能初步分析[D].北京:中国农业科学院,2016:6.
    [13]勒正伟.蓖麻bZIP家族鉴定及与油脂基因互作分析[D].北京:中国科学技术大学,2014:5.
    [14] Agni S P,Eshan S,Nitin J,et al. A rice bZIP transcription factor, OsbZIP16, regulates abiotic stress tolerance when over-expressed in Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology,2018,27(4):393–400.
    [15] Prateek J,Koushik S,Vikas R. Potential in vitro and ex vivo targeting of bZIP53 involved in stress response and seed maturation in Arabidopsis thaliana by five designed peptide inhibitors[J]. BBA-Proteins and Proteomics,2018,1 866:1 249-1 259.
    [16] Hardtke C S, Gohda K, Osterlund M T, et al.HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1binding domain[J]. Embo Journal, 2000, 19(18):4 997-5 006.
    [17] Fukazawa J,Sakai T,Ishida S,et al. Repression Of Shool Growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins[J]. Plant Cell,2000,12(6):901-915.
    [18] Yin Y H, Zhu Q, Dai S H, et al. RF2a,a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter,functions in vascular development[J]. Embo Journal,1997,16(17):5 247-5 259.
    [19] Ringli C, Keller B. Specific interaction of the tomato bZIP transcription factor VSF-1with a non-palindromic DNA sequence that controls vascular gene expression[J]. Plant Molecular Biology,1998,37(6):977-988.
    [20] Mitsutomo A, Yasushi K, Sumiko Y, et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science,2005,309:1 052-1 056.
    [21] Rosario A, Fridtjof W, Andrea E, et al. A Pivotal Role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation[J]. The Plant Cell,2009,21:1 747-1 761.
    [22] Hartings H, Maddaloni M, Lazzaroni N, et al.The O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators[J]. Embo Jonrnal, 1989, 8(10):2 795–2 801.
    [23] Onate L, Vicente Carbajosa J, Lara P, et al.Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm[J]. Journal of Biological Chemistry, 1999,274(14):9 175-9 182.
    [24] Rook F, Weisbeek P, Smeekens S. The lightregulated Arabidopsis bzip transcription factor gene ATB2 encodes a protein with an unusually long leucine zipper domain.[J]. Plant Molecular Biology,1998,37(1):171-178.
    [25] Strathmann A,Kuhlmann M,Heinekamp T,et al.BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2,BZI-3/TBZF and BZI-4, and is functionally involved in flower development[J]. Plant Journal,2001,28(4):397-408.
    [26] Crawford,Nigel M,Anthony D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 10(10):389-395.
    [27] Weltmeier F,Rahmani F,Ehlert A,et al. Expression patterns within the Arabidopsis C/S1bZIP transcription factor network:availability of heterodimerization partners controls gene expression during stress response and development[J]. Plant Molecular Biology,2009,69(1-2):107-119.
    [28] Xue Y J, Zhang Z B, Wang L, et al. Genomewide systematic characterization and its regulatory expression reprogramming process of the bZIP transcription factors during trauma response in Camellia sinensis[J]. Canadian Journal of Forest Research,2018,48(11):1 279-1 291.
    [29] Lu G,Gao C X,Zheng X N,et al. Identification of OshZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta,2009,229(3):605-615.
    [30] Wu S Y,Zhu P H,Jia B W,et al. A Glycine soja group S2 bZIP transcription factor[J]. Tree Physiology,2018,18:234.
    [31] Ji C L,Mao X,Hao J Y,et al. Analysis of bZIP transcription factor family and their expressions under salt stress in chlamydomonas reinhardtii[J]. International Journal of Molecular Sciences,2018,19:2 800.
    [32] Preeti A,Vinay Kumar B,Paramjit K,et al. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress[J]. Scientific Reports,2019,9:4 608.
    [33] Yang J B,Wang M Y, Li W J, et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat[J]. Plant Biotechnology Journal,2019,DOI:10.1111/pbi.13103.
    [34] Kang J Y,Choi H I. Arabidopsis basic leucine zipper proteinsthat mediate stress-responsive abscisic acid signaling[J]. Plant Cell,2002,14:343-357.
    [35] Choi H,Hong J,Ha J,et al. ABFS a family of ABA responsive element binding factors[J].Biol Chem,2002,275:1 723-1 730.
    [36] Class S, Michoel B. The regulation of transcription activity in plants[J]. Trends Plant Sci,1998,3(10):378-383
    [37] Xiang Y,Tang N I,Du H,et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in Rice[J].Plant Physiol,2008,148(4):1 938-1 952.
    [38] Chang C H, Liu Z W,Wang Y Y. A bZIP transcription factor,CaLMF,mediated light-regulated camptothecin biosynthesis in Camptotheca acuminate[J]. Tree Physiology,2018, DOI:10.1093/treephys/tpy106.
    [39] Smith A E,Yang X,Lutian J,et al. Transcriptional regulatory activity of the cereal grain bZip protein TaABF1 can be either stimulated or inhibited by phosphorylation[J].Seed Science Research,2019,1(29):21-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700