用户名: 密码: 验证码:
Desulfuromonas alkenivorans S-7联合稻壳处理酸性重金属废水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Combining Desulfuromonas alkenivorans S-7 with rice husk to treat acid heavy metal wastewater
  • 作者:佘臣杰 ; 唐婕琳 ; 何环 ; 张朦 ; 童丽 ; 唐俊 ; 陶秀祥
  • 英文作者:SHE Chenjie;TANG Jielin;HE Huan;ZHANG Meng;TONG Li;TANG Jun;TAO Xiuxiang;School of Chemical Engineering and Technology,China University of Mining and Technology;Key Laboratory of Coal Processing and Efficient Utilization,Ministry of Education,China University of Mining and Technology;School of Safety Engineering,China University of Mining and Technology;
  • 关键词:硫酸盐还原菌 ; 生物反应器 ; 重金属离子 ; 傅里叶红外光谱(FT-IR)
  • 英文关键词:sulfate reducing bacteria;;bioreactor;;heavy metal ions;;Fourier Transform Infrared Spectroscopy
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学化工学院;中国矿业大学煤炭加工与高效洁净利用教育部重点实验室;中国矿业大学安全工程学院;
  • 出版日期:2019-04-11 16:28
  • 出版单位:煤炭学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金资助项目(51204184);; 国家大学生创新基金资助项目(201810290029)
  • 语种:中文;
  • 页:245-252
  • 页数:8
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:X703
摘要
为了研究硫酸盐还原菌和稻壳联合生物反应器在重金属废水处理中作用及机理。利用实验室前期分离鉴定的硫酸盐还原菌Desulfuromonas alkenivorans S-7联合填充稻壳柱式生物反应器处理人工合成酸性重金属(Fe~(3+),Mn~(2+),Cr~(6+))废水。比较了废水处理过程中理化特性(pH,E_h,E_c)及3种重金属离子变化规律,并利用FT-IR光谱仪分析了微生物和稻壳联合处理作用下重金属离子去除特性。研究结果表明:S-7能够明显提高酸性废水的pH,20 d后pH最终稳定在6.20左右,也能使反应体系维持在较高的还原环境并降低体系的电导率。S-7菌株对3种代表性离子都有一定的处理效果,对Fe,Mn,Cr三种金属离子的去除效率分别为Fe>Mn>Cr。反应器处理前期废水中离子的去除速率较快,后期由于离子共存对废水处理的影响使废水中金属离子浓度趋于平衡,出现动态制约平衡,S-7菌株对3种重金属离子的去除机制可能存在差异。处理后期由于Cr~(6+)浓度上升明显,增大了SRB反应器中的重金属含量,明显影响SRB反应器的稳定性能;稻壳填充对S-7菌株生长能够稳定维持SRB反应器的厌氧环境,并且稻壳对金属离子去除也存在一定程度的物理吸附作用。FT-IR分析表明:S-7菌体处理废水时会吸附Fe,Mn,Cr离子,其中羟基、胺基、酰胺基及羧基是发生吸附作用重要的官能团;稻壳在处理重金属废水前后,稻壳的Si—O—Si和羰基在处理重金属废水中可能发挥了作用。
        To study the role and mechanism of sulfate-reducing bacteria and rice husk combined bioreactor in heavy metal wastewater treatment,the sulfate-reducing bacteria Desulfuromonas alkenivorans S-7 isolated and identified in the laboratory was combined with a rice husk column bioreactor to deal with the synthetic acid heavy metal(Fe~(3+),Mn~(2+),Cr~(6+)) wastewater.The physicochemical characteristics(pH,E_h,E_c) and changes of three heavy metal ions in wastewater treatment process were compared.Then the removal characteristics of heavy metal ions under the combined treatment of microorganism and rice husk were analyzed by FT-IR spectrometer.The results showed that S-7 could significantly increase the pH of acidic wastewater,and the pH was finally stabilized at about 6.20 after 20 days.It could also maintain the reaction system in a high reduction environment and reduce the conductivity of the system.S-7 strain had a certain treatment effect on three representative ions,and the removal efficiency of Fe,Mn and Cr metal ions was Fe>Mn>Cr,respectively.At the early stage,the removal rate of metal ions in the wastewater treated by the reactor was relatively fast,but at the later stage,due to the influence of metal ions coexistence on the wastewater treatment,the concentration of them in the wastewater tended to balance,and a dynamic restriction balance appeared.The removal mechanism of the three heavy metal ions in the S-7 strain may be different.In the later stage of treatment,the concentration of Cr~(6+) increased significantly,which increased the heavy metal content in SRB reactor and significantly affected the stability of SRB reactor.Rice husk filling could maintain the stable anaerobic environment of SRB reactor for the growth of S-7 strain,and the rice husk also had a certain degree of physical adsorption effect on the removal of metal ions.FT-IR analysis showed that S-7 bacteria adsorbed Fe,Mn and Cr ions when treating wastewater,and the hydroxyl,amine,amide and carboxyl groups were important functional groups for adsorption.The Si—O—Si and carbonyl groups of rice hull may play a role in the treatment of heavy metal wastewater.
引文
[1] LI Wei,CHEN Longqian,ZHOU Tianjian,et al.Impact of coal gangue on the level of main trace elements in the shallow groundwater of a mine reclamation area[J].Mining Science and Technology (China),2011,21(5):715-719.
    [2] SILVA L F,WOLLENSCHLAGER M,OLIVEIRA M L.A preliminary study of coal mining drainage and environmental health in the Santa Catarina region Brazil[J].Environmental geochemistry and health,2011,33(1):55-65.
    [3] FAN Jingsen,SUN Yuzhuang,LI Xinyu,et al.Pollution of organic compounds and heavy metals in a coal gangue dump of the gequan coal mine,china[J].Chinese Journal of Geochemistry,2013,32(3):241-247.
    [4] PAPIRIO S,VILLA-GOMEZ K D,ESPOSITO G,et al.Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria:A critical review[J].Critical Reviews in Environmental Science and Technology,2013,43(23):2545-2580.
    [5] 章非娟.工业废水污染防治[M].上海:同济大学出版社,2001:97-100.
    [6] 洪芬芬.煤矸石山微生物群落和硫形态分布特征研究[D].徐州:中国矿业大学,2014.HONG Fenfen.Study on microbial communities and distribution characteristics of sulfur speciation of coal gangue dump[D].Xuzhou:China University of Mining and Technology,2014.
    [7] 廖芳芳,郑嵩,葛皓.煤矸石山生态修复方法综述[J].环保科技,2012,18(1):21-25.LIAO Fangfang,ZHENG Song,GE Hao.Methods of ecological restoration of coal gangue hill[J].Environmental Protection Technology,2012,18(1):21-25.
    [8] 方迪,王方,单红仙等.硫酸盐还原菌对酸性废水中重金属的生物沉淀作用研究[J].生态环境学报,2010,19(3):562-565.FANG Di,WANG Fang,SHAN Hongxian,et al.Bio-precipitation of heavy metals from a synthetic acidic wastewater by sulfate-reducing bacteria in a bench scale continuous-flow stirred tank reactor[J].Journal of Ecological Environment,2010,19(3):562-565.
    [9] MARIA T A,CARLA C,BO M.Precipitation of Zn(II),Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids[J].Chemosphere,2006,66:1677-1683.
    [10] LU J,WU J,CHEN T,et al.Valuable metal recovery during the bioremediation of acidic mine drainage using sulfate reducing straw bioremediation system[J].Water,Air,& Soil Pollution,2012,223(6):3049-3055.
    [11] 亢悦.硫酸盐还原菌在污水处理中的应用[J].广东化工,2012,39(9):120.KANG Yue.Sulfate-reducing bacteria in sewage treatment[J].Guangdong Chemical Industry,2012,39(9):120.
    [12] NECULITA C,ZAGURY G J,BUSSIéRE B.Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria:Critical review and research needs[J].J.Environ.Qual.,2007,36(1):1-16.
    [13] HULSHOF A H M,BLOWES D W,GOULD W D.Evaluation of in situ layers for treatment of acid mine drainage:A field comparison[J].Water Res.,2006,40(9):1816-1826.
    [14] 唐婕琳,何环,张文娟,等.SRB菌的分离鉴定及其对矸石山酸性废水的处理[J].煤炭学报,2014,39(11):2307-2314.TANG Jielin,HE Huan,ZHANG Wenjuan,et al.Isolation and identification of SRB and its utilization on processing of acid mine drainage of coal gangue dump[J].Journal of China Coal Society,2014,39(11):2307-2314.
    [15] 李丛丛.废水中硫化物的生成、硫化物对生化系统的影响及其处理技术的研究[D].青岛:青岛科技大学,2014.LI Congcong.Study on sulfide production,influence of suldide on biochemical system and removal technolygh in sulfate wastewater[D].Qingdao:Qingdao University of Science and Technology,2014.
    [16] SAMIA A,TAHAR M,SAMI S.Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source[J].Minerals Engineering,2007,20(2):173-178.
    [17] 李福德,李昕,谢翼飞,等.微生物去除重金属和砷-复合硫酸盐还原菌法的机理与技术[M].北京:化学工业出版社,2011.
    [18] 王辉.混合硫酸盐还原菌生长特性及处理重金属废水的研究[D].长沙:湘潭大学,2011.WANG Hui.Research on the growth characters of sulfate-reducing bacteria and removal of heavy metals[D].Changsha:Xiangtan University,2011.
    [19] 吴大清,刁桂仪,彭金莲.阴离子表面剂与重金属离子在高岭矿物表面协同吸附效应[J].科学通报,2001(10):860-862.WU Daqing,DIAO Guiyi,PENG Jinlian.Synergistic adsorption effect of anionic surfactant and heavy metal ions on Kaolin mineral surface[J].Science Bulletin,2001(10):860-862.
    [20] HAO O J,HUANG L,CHEN J M,BUGASS R L.Effects of metal additions on sulfate reduction activity in wastewater[J].Toxicol.Environ.Chem.,1994,46(4):197-212.
    [21] 李猛,张鸿郭,周子倩,等.固定化SRB处理低浓度含铬废水[J].环境工程,2016,34(4):20-24.LI Meng,ZHANG Hongguo,ZHOU Ziqian,et al.Treatment of the wastewate containing low concentration of chromium by immobilized SRB[J].Environmental Engineering,2016,34(4):20-24.
    [22] AZABOU S,MECHICH T,SAYADI S.Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source[J].Minerals Engineering,2007,20(2):173-178.
    [23] 郑茹.生物吸附剂对地下水中铁锰的吸附特性研究[D].哈尔滨:东北农业大学,2013.ZHENG Ru.Adsorption characteristic study of Ve(II) and Mn(II) from groundwater using biosorbents[D].Haerbin:Northeast Agricultural University,2013.
    [24] 范春辉,张颖,张颖超,等.红外光谱法研究低温焚烧稻壳灰对Cr(Ⅵ)的吸附机理[J].光谱学与光谱分析,2010,30(9):2345-2349.FAN Chunhui,ZHANG Ying,ZHANG Yingchao,et al.Cr(Ⅵ) Adsorption mechanism on rice husk ash burned at low temperature by method of IR spectra[J].Spectroscopy and Spectroscopy Analysis,2010,30(9):2345-2349.
    [25] 翁诗甫.傅里叶变换红外光谱分析(第二版)[M].北京:化学工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700