太湖乔木林河岸植被缓冲带截留氮素效率
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Removing nitrogen with trees planted in the riparian vegetation buffer strips of Taihu Lake
  • 作者:朱晓成 ; 吴永波 ; 余昱莹 ; 李文霞
  • 英文作者:ZHU Xiaocheng;WU Yongbo;YU Yuying;LI Wenxia;Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University;
  • 关键词:生态学 ; 河岸缓冲带 ; 宽度 ; 植物类型 ; 氮素 ; 截留率
  • 英文关键词:forest ecology;;riparian vegetation buffer strip;;width;;vegetation type;;nitrogen;;removal rate
  • 中文刊名:浙江农林大学学报
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:南京林业大学南方现代林业协同创新中心;
  • 出版日期:2019-05-28 16:24
  • 出版单位:浙江农林大学学报
  • 年:2019
  • 期:03
  • 基金:“十三五”国家重点研发计划项目(2016YFC0502704);; 国家林业局引进国际先进林业科学技术计划项目(2013-4-63)
  • 语种:中文;
  • 页:140-147
  • 页数:8
  • CN:33-1370/S
  • ISSN:2095-0756
  • 分类号:X52;X173
摘要
为研究河岸植被缓冲带对氮素的截留效率,以太湖流域平缓坡地上人工林河岸缓冲带作为研究对象,分析了不同河岸缓冲带宽度(5, 15, 30, 40 m),不同植物类型(‘南林95’杨Populus×euramericana ‘Nanlin 95’林、中山杉Taxodium hybrid ‘Zhongshanshan’林、南林杨95-中山杉混交林)对不同深度径流水及土壤中氮素的截留效果。结果表明:15 m宽的河岸缓冲带即能很好地截留各形态氮素, 40 m缓冲带对径流水中硝态氮、铵态氮、总氮的截留率分别达68.8%, 68.7%和66.0%;同一宽度条件下,缓冲带对40 cm深径流水中铵态氮、总氮的截留率较高,分别达71.4%和69.1%,对20 cm深径流水中硝态氮截留率较高,达70.6%;森林土壤对铵态氮和硝态氮的截留主要在中层土壤,对总氮截留主要在表层土壤;杨树林缓冲带对径流水中铵态氮和硝态氮的截留率较高(P<0.05),达77.4%和66.3%;杨树-中山杉混交林缓冲带对总氮的截留率较高(P<0.05),达73.0%;植物叶片(r=-0.53)全氮和土壤总氮(r=-0.59)均与径流水中总氮呈负相关关系。图8参26
        In the Taihu Lake area many riparian vegetation buffer strips have been built to alleviate the input of eutrophic nutrients into the lake. To provide a scientific basis for determining a suitable width and components of these riparian buffer strips, the effects of riparian vegetation buffer strips with widths of 5, 15, 30, and 40 m and vegetation types of a Populus × euramericana ‘Nanlin 95' plantation, an Taxodium hybrid ‘Zhongshanshan' plantation, and a mixed plantation with the two tree species on total nitrogen, ammonia nitrogen, and nitrate nitrogen removal rates for different depths of runoff water and soil were studied. Results showed that the buffer strips of 15 m width effectively removed various fractions of N and removal rates in runoff water of 40 m width of 68.8% for NO3-, 68.7% for NH4+, and 66.0% for total N. Removal rates of NH4+and total N in runoff water at 40 cm below ground level were higher, reached 71.4% and 69.1%, but NO3-removal rate in the 20 cm depth of runoff water was higher, reached 70.6%. The interceptions of NH4+and NO3-in plantation soils were mainly in the middle soil layer, and total N was trapped mainly in surface soils. The poplar plantation had a higher removal rate of NH4+and NO3-in runoff water(P<0.05), reached 77.4% and 66.3%, but the mixed forests of the poplar plantation and Taxodium hybrid ‘Zhongshanshan' plantation had a higher removal rate of total N(P<0.05), reached 73.0%. Also, total N in runoff water was negatively correlated to total N in the soil(r =-0.59) and total N in the leaves(r =-0.53) of plants. [Ch, 8 fig. 26 ref.]
引文
[1]陈勇.陕西省农业非点源污染评价与控制研究[D].杨凌:西北农林科技大学, 2010.CHEN Yong. Research on Evaluation and Controling Measure System of Agriculture Non-point Source Pollution in Shaanxi Province[D]. Yangling:Northwest A&F University, 2010.
    [2]赵晓军,翟超英,赵明月.农业污染国内外研究进展及防控对策建议[J].农业环境与发展, 2013, 30(4):1-6.ZHAO Xiaojun, ZHAI Chaoying, ZHAO Mingyue. Agricultural pollution research progress in China and abroad and pollution control countermeasures[J]. Agro-Environ Dev, 2013, 30(4):1-6.
    [3]HICKEY M, BRIAN C, DORAN B. A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems[J]. Water Qual Res J Can, 2004, 39(3):311-317.
    [4]MANKIN K R, NGANDU D M, BARDEN C J, et al. Grass-shrub riparian buffer removal of sediment phosphorus, and nitrogen from simulated runoff[J]. J Am Water Resour Association, 2007, 43(5):1108-1116.
    [5]DUCHEMIN M, HOGUE R. Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec(Canada)[J]. Agric Ecol Environ, 2009, 131(1/2):85-97.
    [6]王敏,黄宇驰,吴建强.植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究[J].环境科学, 2010, 31(11):2607-2612.WANG Min, HUANG Yuchi, WU Jianqiang. Quantification study on the runoff and seepage distribution and N, P pollutants removal of the vegetated buffer strips[J]. Environ Sci, 2010, 31(11):2607-2612.
    [7]LIU Xingmei, ZHANG Xuyang, ZHANG Minghua. Major factors influencing the efficacy of vegetated buffers on sediment trapping:a review and analysis[J]. J Envi Qual, 2008, 37(5):1667-1674.
    [8]SPRUILL T B. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality[J]. J Environ Qual, 2000, 29(5):1523-1538.
    [9]KOVACIC D A, DAVID M B, GENTRY L E, et al. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage[J]. J Environ Qual, 2000, 29(4):1262-1274.
    [10]WANG L, DUGGIN J A, NIE D. Nitrate-nitrogen reduction by established tree and pasture buffer strips associated with a cattle feedlot effluent disposal area near Armidale, NSW Australia[J]. J Environ Manage, 2012, 99(5):1-9.
    [11]陈金林,潘根兴,张爱国,等.林带对太湖地区农业非点源污染的控制[J].南京林业大学学报(自然科学版),2002, 26(6):17-20.CHEN Jinlin, PAN Genxing, ZHANG Aiguo, et al. The controlling effects of shelter forest on non-point source pollution of agricultural lands in Taihu Lake area[J]. J Nanjing For Univ Nat Sci Ed, 2002, 26(6):17-20.
    [12]王庆成,崔东海,王新宇,等.帽儿山地区不同类型河岸带土壤的反硝化效率[J].应用生态学报, 2007, 18(12):2681-2686.WANG Qingcheng, CUI Donghai, WANG Xinyu, et al. Soil denitrification rates in different type riparian zones in Maoershan mountainous region of China[J]. Chin J Appl Ecol, 2007, 18(12):2681-2686.
    [13]林晓晟.吉林省辽河流域土壤涵水与缓冲带截污能力研究[D].长春:吉林大学, 2017.LIN Xiaosheng. Research on Soil Water Conservation and Riparian Buffer Pollutant Retention in Liao River Basin,JilinProvince[D]. Changchun:Jilin University, 2017.
    [14]吴永波.河岸植被缓冲带减缓农业面源污染研究进展[J].南京林业大学学报(自然科学版), 2015, 39(3):143-148.WU Yongbo. Research progress on the riparian vegetation buffer strip functions on agricultural nonpoint source pollution reduction[J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(3):143-148.
    [15]SYVERSEN N. Effect and design of buffer zones in the Nordic climate:the influence of width, amount of surface runoff, seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff[J]. Eco Eng,2005, 24(5):483-490.
    [16]赵警卫,胡彬.河岸带植被对非点源氮、磷以及悬浮颗粒物的截留效应[J].水土保持通报, 2012, 32(4):51-55.ZHAO Jingwei, HU Bin. Interception of non-point source N and P and suspended solid matter by riparian vegetation[J]. Bull Soil Water Conserv, 2012, 32(4):51-55.
    [17]孟亦奇,吴永波,朱颖,等.利用河岸缓冲带去除径流水中氮的研究[J].湿地科学, 2016, 14(4):532-537.MENG Yiqi, WU Yongbo, ZHU Ying, et al. The study on removing nitrogen in runoff water by riparian buffer strips[J]. Wetland Sci, 2016, 14(4):532-537.
    [18]汤家喜.河岸缓冲带对农业非点源污染的阻控作用研究[D].沈阳:沈阳农业大学, 2014.TANG Jiaxi. Study on Control of Agricultural Non-point Source Pollutants by Riparian Vegetated Filter Strips[D].Shenyang:Shengyang Agricultural University, 2014.
    [19]郭鑫.辽河保护区植被缓冲带对N、 P污染的阻控作用研究[D].沈阳:沈阳大学, 2016.GUO Xin. The Study on the Effect of Vegetation Buffer Zone about N and P Pollution in Liao River Protection Zone[D]. Shenyang:Shenyang Universiy, 2016.
    [20]王敏,吴建强,黄沈发,等.不同坡度缓冲带径流污染净化效果及其最佳宽度[J].生态学报, 2008, 28(10):4951-4956.WANG Min, WU Jianqiang, HUANG Shenfa, et al. Effects of slope and width of riparian buffer strips on runoff purification[J]. Acta Ecol Sin, 2008, 28(10):4951-4956.
    [21]于红丽.不同类型河岸带对溪流氮素输入的截留转化效率研究[D].哈尔滨:东北林业大学, 2005.YU Hongli. Nitrogen Attenuation Efficiency at Difference Types Stream Riparian Buffer Zones[D]. Harbin:Northeast Foretstry University, 2005.
    [22]BORIN M, PASSONI M, THIENE M, et al. Multiple functions of buffer strips in farming areas[J]. Eur J Agron,2010, 32(1):103-111.
    [23]李怀恩,邓娜,杨寅群,等.植被过滤带对地表径流中污染物的净化效果[J].农业工程学报, 2010, 26(7):81-86.LI Huaien, DENG Na, YANG Yanqun, et al. Clarification efficiency of vegetative filter strips to several pollutants in surface runoff[J]. Trans CSAE, 2010, 26(7):81-86.
    [24]黄玲玲.竹林河岸带对氮磷截留转化作用的研究[D].北京:中国林业科学研究院, 2009.HUANG Lingling. Study on Retaining and Transformation of N and P in Bamboo Riparian Buffer Zone[D]. Beijing:Chinese Academy of Forestry, 2009.
    [25]司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤, 2000, 32(4):188-193.SI Youbin, WANG Shenqiang, CHEN Huaiman. Loss of nitrogen and phosphorus in farmland and water Eutrophication[J]. Soils, 2000, 32(4):188-193.
    [26]刘燕,夏品华,郑钧宁,等.河岸缓冲带植物配置模式对面源污染物的净化效果[J].贵州农业科学, 2014, 42(10):248-251.LIU Yan, XIA Pinhua, ZHENG Junning, et al. Effects of different plant configuration modes of riparian buffer strips on runoff purification[J]. Guizhou Agric Sci, 2014, 42(10):248-251.