用户名: 密码: 验证码:
叶绿醇对铅污染土壤酶活性及土壤铅有效态影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Phytol on Soil Enzyme Activity and Lead Availability in Lead-contaminated Soil
  • 作者:于培鑫 ; 潘芳慧 ; 王友保 ; 李晶
  • 英文作者:YU Peixin;PAN Fanghui;WANG Youbao;LI Jing;College of Life Sciences, Anhui Normal University;Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui;College of Life Sciences, Bengbu Medical College;
  • 关键词:铅污染土 ; 叶绿醇 ; 土壤酶活性 ; 有效态铅含量
  • 英文关键词:lead contaminated soil;;phytol;;soil enzyme activity;;available lead content
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:安徽师范大学生命科学学院;安徽师范大学生物环境与生态安全安徽省高校省级重点实验室;蚌埠医学院生命科学学院;
  • 出版日期:2019-10-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(31070401);; 安徽省高校自然科学基金重大项目(KJ2018ZD033);安徽省高校自然科学基金重点项目(KJ2018A1000);; 重要生物资源保护与利用研究安徽省重点实验室基金项目
  • 语种:中文;
  • 页:360-365
  • 页数:6
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:S154.2;X53
摘要
采用土培盆栽试验,研究了在铅污染土壤中添加叶绿醇对土壤酶活性和土壤铅离子有效态的影响,探讨了不同处理时间下叶绿醇对铅污染土壤的缓解作用。结果表明:短时间内在土壤中添加叶绿醇对土壤过氧化氢酶、蔗糖酶和碱性磷酸酶活性具有促进作用,对土壤脲酶活性具有抑制作用,且每种酶对叶绿醇的敏感程度不同,其中碱性磷酸酶最为敏感;随着处理时间延长土壤中过氧化氢酶活性、脲酶活性和铅离子有效态降低,蔗糖酶活性和碱性磷酸酶活性显著升高;土壤重金属铅浓度为600 mg/kg时,叶绿醇浓度为50 mg/kg蔗糖酶活性最强,比空白对照组高出122.28%;当土壤中叶绿醇浓度为250 mg/kg时,土壤碱性磷酸酶活性最高,是空白对照组的251.61%。总之,在铅污染的土壤中添加叶绿醇后能改变土壤酶活性,降低土壤中铅的有效态,并且随着培养时间的延长,叶绿醇对铅污染土壤的修复效果逐渐降低。
        A pot experiment was carried out to study the effects of applying phytol to lead(Pb)-contaminated soil on soil enzyme activity and Pb availability, and the alleviation effects of phytol to the Pb-contaminated soil under different treatment time were discussed. The results showed that adding phytol to soil in a short time promoted the activities of soil catalase, sucrase and alkaline phosphatase, while inhibited soil urease activity. Moreover, each enzyme had different sensitivity to phytol, among which alkaline phosphatase was the most sensitive. With the prolongation of treatment time, the activities of catalase and urease as well as available Pb content in the soil decreased, while the activities of invertase and phosphatase increased significantly. When the Pb concentration was 600 mg/kg in soil and the phytol concentration was 50 mg/kg, sucrase activity was the strongest, which was 122.28% higher than that of the blank control. Additionally, when the phytol concentration was 250 mg/kg in the soil, the activity of phosphatase was the strongest, which was 251.61% of the blank control. In conclusion, the addition of phytol to Pb-contaminated soil could change soil enzyme activity and reduce the content of available Pb in the soil. What's more, with the prolongation of culture time, the alleviation effect of phytol on Pb-contaminated soil reduced gradually.
引文
[1] Foulds S A,Brewer P A,Macklin M G,et al.Flood-related contamination in catchments affected by historical metal mining:An unexpected and emerging hazard of climate change [J].Science of the Total Environment,2014,476/477:165-180.
    [2] Zhang X,Yang L,Li Y,et al.Impacts of lead / zinc mining and smelting on the environment and human health in China [J].Environmental Monitoring & Assessment,2012,184(4):2261-2273.
    [3] 郑晓明,张守伟.中国有色金属工业废水污染特征分析[J].中国锰业,2017,35(3):142-144.
    [4] 陈丽娜,艾绍英,杨少海,等.农田土壤铅污染的固定修复技术研究进展[J].广东农业科学,2010,37(10):27-28.
    [5] Picard F,Chaouki J.NaClO / NaOH soil oxidation for the remediation of two real heavy-metal and petroleum contaminated soils [J].Journal of Environmental Chemical Engineering,2017,5(3):2691-2698.
    [6] 薛永,王苑螈,姚泉洪,等.植物对土壤重金属镉抗性的研究进展薛永[J].生态环境学报,2014,23:528-34.
    [7] Hu B,Chen S,Hu J,et al.Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution [J].PLoS One,2017,12(2):e0172438.
    [8] Huang Y,Chen G,Xiong L,et al.Current situation of heavy metal pollution in farmland soil and phytoremediation application [J].Asian Agricultural Research,2016,8(1):22-24.
    [9] 黄占斌,焦海华.土壤重金属污染及其修复技术[J].自然杂志,2012,34(6):350-354.
    [10] Wuana R A,Okieimen F E.Heavy metals in contaminated soils:A review of sources,chemistry,risks and best available strategies for remediation [J].International Scholarly Research Network,ISRN Ecology,2011:e402647.
    [11] 黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013,32(3):409-417.
    [12] Gao Y,Miao C Y,Xia J,et al.Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure [J].Frontiers of Environmental Science & Engineering,2012,6(2):213-223.
    [13] Pandi S,Karthik C,Hema S.Phytol-a biosurfactant from the aquatic weed Hydrilla verticillata [J].Biocatalysis and Agricultural Biotechnology,2019,17:736-742
    [14] 姜凌,张春义.植物维生素生物强化进展[J].生物技术进展,2016,6(6):381-388.
    [15] 齐圆晖.大豆尿黑酸叶绿醇转移酶(HPT)基因的分离与功能分析[D].长春:长春理工大学,2008.
    [16] 靳晓琳.缺镁胁迫下柑橘幼苗cDNA-AFLP分析[D].福州:福建农林大学,2013.
    [17] 杨蕾.盐胁迫下发状念珠藻抗氧化系统及蛋白质、脂质的研究[D].济南:齐鲁工业大学,2013.
    [18] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [19] Maharjan M,Sanaullah M,Razavi B S,et al.Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils [J].Applied Soil Ecology,2017,113:22-28.
    [20] 李猛,张恩平,张淑红,等.长期不同施肥设施菜地土壤酶活性与微生物碳源利用特征比较[J].植物营养与肥料学报,2017,23(1):44-53.
    [21] Katharina G,Jill R,Peter D.Phytol metabolism in plants [J].Progress in Lipid Research,2019,74:1-17.
    [22] 张体彬,展小云,冯浩.盐碱地土壤酶活性研究进展和展望[J].土壤通报,2017,48(2):495-500.
    [23] 张艺,王春梅,许可,等.模拟氮沉降对温带森林土壤酶活性的影响[J].生态学报,2017,37(6):1956-1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700