用户名: 密码: 验证码:
Pb~(2+)功能核酸生物传感器的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Functional Nucleic Acids for Detecting Pb~(2+)
  • 作者:李宸葳 ; 杜再慧 ; 林少华 ; 罗云波 ; 许文涛
  • 英文作者:LI Chen-wei;DU Zai-hui;LIN Shao-hua;LUO Yun-bo;XU Wen-tao;College of Food Science and Nutritional Engineering,China Agricultural University;Beijing Vocational College of Agriculture;
  • 关键词:铅离子 ; 功能核酸 ; 纳米材料 ; 生物传感器
  • 英文关键词:Pb2+;;functional nucleic acids;;nanomaterials;;biosensors
  • 中文刊名:生物技术通报
  • 英文刊名:Biotechnology Bulletin
  • 机构:中国农业大学食品科学与营养工程学院;北京农业职业学院;
  • 出版日期:2018-09-25 14:30
  • 出版单位:生物技术通报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(31671922);; 北京市科技新星计划(xxjc201721)
  • 语种:中文;
  • 页:137-145
  • 页数:9
  • CN:11-2396/Q
  • ISSN:1002-5464
  • 分类号:TP212
摘要
Pb~(2+)在低浓度下对人体的神经系统、血液系统等带来多重损伤,尤其对儿童的神经系统产生不可逆的神经损害,在自然环境中也可以通过生物链传递进入到人体,对人体健康造成影响,因此Pb~(2+)的检测受到了人们的广泛关注。目前传统的Pb~(2+)检测技术主要包括大型仪器法,化学反应比色法,电化学方法等,但仍然存在着操作复杂、成本高、检测时间长等弊端。近年来,人们发现了利用功能核酸对Pb~(2+)进行检测具有简单、快速、灵敏、强特异性等优点,因此Pb~(2+)功能核酸生物传感器受到越来越多的关注。首先介绍了Pb~(2+)依赖型功能核酸的体外筛选方法及其结构性质;其次根据Pb~(2+)功能核酸传感器的信号输出方式进行分类,包括比色生物传感器、荧光生物传感器、电化学生物传感器、纳米材料生物传感器及其他类型的生物传感器等。同时还对传感器之间的原理、灵敏度、特异性、适用领域等方面进行比较和优缺点的简单评价;最后对Pb~(2+)功能核酸生物传感器的中存在的不足,以及未来的发展方向进行了展望,意在为今后研发更便携、更灵敏、更准确的Pb~(2+)功能核酸生物传感器提供理论参考。
        Low concentration of Pb~(2+) can cause multiple damages to the nervous system and blood system of the human body,especiallythe damage to the nervous system of children is irreversible. In natural environment,Pb~(2+) can also pass into the human body through thebiologic chain and affect the health of the human body. Therefore,the detection of Pb~(2+) has attracted wide attention. At present,the traditionalmethods of detecting Pb~(2+) mainly include Large instrument method,chemical reaction colorimetric method,and electrochemical method;however,there are still disadvantages such as operation complex,cost high,and detection time long. In recent years,using functionalnucleic acid to detect Pb~(2+) shows the advantages of simple,rapid,sensitive,and high specialty;therefore,increasing attentions has beenpaid to Pb~(2+) biosensors based on functional nucleic acid. Firstly,the screening methods and structural properties of Pb~(2+)-dependent functionalnucleic acids in vitro are introduced. Secondly,the sensors are classified according to the way of signal output in Pb~(2+) functional nucleicacid sensors,including colorimetric biosensor,fluorescent biosensor,electrochemical biosensor,nanomaterial biosensor,and other typeof biosensors. Concurrently,the principle,sensitivity,specificity and application fields of various sensors are compared,and then theiradvantages and disadvantages are evaluated. Finally,the shortcomings are analyzed and the future development direction of Pb~(2+) functionalnucleic acid biosensor is prospected,aiming at providing a theoretical basis for developing more portable,more sensitive,and more accuratePb~(2+) functional nucleic acid biosensors.
引文
[1]Xu M, Gao Z, Wei Q, et al. Hemin/G-quadruplex-based DNAzymeconcatamers for in situ amplified impedimetric sensing of copper(II)ion coupling with DNAzyme-catalyzed precipitation strategy[J].Biosens Bioelectron, 2015, 74(18):1-7.
    [2]Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA[J].Chemistry&Biology, 1994, 1(4):223-229.
    [3]Lan T, Furuya K, Lu Y. A highly selective lead sensor based on aclassic lead DNAzyme[J]. Chem Commun, 2010, 46(22):3896-3898.
    [4]Brown AK, Li J, Pavot CMB, et al. A lead-dependent DNAzyme witha two-step mechanism[J]. Biochemistry, 2003, 42(23):7152-7161.
    [5]Wang Z, Lee JH, Lu Y. label-free colorimetric detection of lead ionswith a nanomolar detection Limit and tunable dynamic range byusing gold nanoparticles and DNAzyme[J]. Advanced Materials,2008, 20(17):3263-3267.
    [6]Liu JW, Lu Y. A colorimetric lead biosensor using DNAzymedirected assembly of gold nanoparticles[J]. Journal of theAmerican Chemical Ssociety, 2003, 125(22):6642-6643.
    [7]Ernest SK, Audrey P. Nanotechnology, nanomedicine and thedevelopment of new effective therapies for cancer[J]. ChemicalReviews, 2005, 105(4):1547-1562.
    [8]Wei H, Li B, Li J, et al. DNAzyme-based colorimetric sensing oflead(Pb2+)using unmodified gold nanoparticle probes[J].Nanotechnology, 2008, 19(9):095501.
    [9]Sun H, Yu L, Chen H, et al. A colorimetric lead(II)ions sensorbased on selective recognition of G-quadruplexes by a clip-likecyanine dye[J]. Talanta, 2015, 136:210-214.
    [10]Liu CW, Huang CC, Chang HT. Highly selective DNA-based sensorfor lead(II)and mercury(II)ions[J]. Anal Chem, 2009, 81(6):2383-2387.
    [11]Li J, Lu Y, A highly sensitive and selective catalytic DNA biosensorfor lead ions[J]. Journal of the American Chemical Society. 122(2000)10466-10467.
    [12]Zhao YX, Lin QI, Yang WJ, et al. Amplified fluorescence detectionof Pb2+, using Pb2+-dependentDNAzymecombinedwithnickingenzyme-mediated enzymatic recycling amplification[J]. ChineseJournal of Anal Chem, 2012, 40(8):1236-1240.
    [13]伊魁宇. CdTe量子点的合成及其基于荧光淬灭作用的分析应用[D].沈阳:东北大学, 2009.
    [14]Zhang L, Han B, Li T, et al. label-free DNAzyme-based fluorescingmolecular switch for sensitive and selective detection of leadions[J]. Chem Commun, 2011, 47(11):3099-3101.
    [15]Zeng G, Zhou Y, Tang L, et al. Label free detection of lead usingimpedimetric sensor based on ordered mesoporous carbon-goldnanoparticles and DNAzyme catalytic beacons[J]. Talanta.2016, 146:641-647.
    [16]Zhao XH, Kong RM, Zhang XB, et al. Graphene-DNAzyme basedbiosensor for amplified fluorescence “turn-on” detection of Pb2+with a high selectivity[J]. Anal Chem, 2011, 83(13):5062-5066.
    [17]Yun W, Wu H, Liu X, et al. Simultaneous fluorescent detectionof multiple metal ions based on the DNAzymes and grapheneoxide[J]. Analytica Chimica Acta, 2017, 986:115-117.
    [18]类成存.基于表面增强拉曼光谱的生物传感器研制[D].青岛:青岛科技大学, 2014.
    [19]Alam A. GFP expressing bacterial biosensor to measure leadcontamination in aquatic environment[J]. Current Science,2008, 207(9):2003-2017.
    [20]Selifonova O, Burlage R, Barkay T, Bioluminescent sensors forthe detection of bioavailable Hg(II)in the environment[J].Applied&Environmental Microbiology, 1993, 59:3083-3090.
    [21]Garaj S, Hubbard W, Reina A, et al. Graphene as a sub-nanometertrans-electrode membrane[J]. Nature, 2010, 467(7312):190-193.
    [22]Dekker C. Solid-state nanopores.[J]. Nat Nanotechnol, 2007, 2(4):209-215.
    [23]Li J, Stein D, Mcmullan C, et al. Ion-beam sculpting at nanometreLength scales[J]. Nature, 2001, 412(6843):166-169.
    [24]Kawano R, Osaki T, Sasaki H, et al. Rapid detection of a cocainebinding aptamer using biological nanopores on a chip[J]. J AmChem Soc, 2011, 133(22):8474-8477.
    [25]LiWW,GongL,BayleyH.Single-moleculedetectionof5-hydroxymethylcytosine in DNA through chemical modificationand nanopore analysis.[J]. Angewandte Chemie, 2013, 125(16):4446-4451.
    [26]Wang G, Wang L, Han Y, et al. Nanopore detection of copper ionsusing a polyhistidine probe[J]. Biosens Bioelectron, 2014, 53(9):453-458.
    [27]Makra I, Jágerszki G, Bitter I, et al. Nernst-Planck/Poisson modelfor the potential response of permselective gold nanopores[J].Electrochimica Acta, 2012, 73(7):70-77.
    [28]Chang W, Bard AJ, Feldberg SW. Current rectification at quartznanopipet electrodes[J]. Anal Chem, 1997, 69(22):4627-4633.
    [29]Siwy Z, Trofin L, Kohli P, et al. Protein biosensors based onbiofunctionalized conical gold nanotubes[J]. J Am Chem Soc,2005, 127(14):5000-5001.
    [30]Tian Y, Hou X, Wen L, et al. A biomimetic zinc activated ionchannel[J]. Chem Commun, 2010, 46(10):1682-1684.
    [31]Li C, Ma F, Wu Z, et al. Solution-pH-modulated rectification ofionic current in highly ordered nanochannel arrays patterned withchemical functional groups at designed positions[J]. AdvancedFunctional Materials, 2013, 23(31):3836-3844.
    [32]Shang Y, Zhang Y, Li P, et al. DNAzyme tunable lead(II)gatingbased on ion-track etched conical nanochannels[J]. ChemCommun, 2015, 51(27):5979-5981.
    [33]HeH,XuX,WangP,etal.Thefacilesurfacechemicalmodification of a single glass nanopore and its use in thenonenzymatic detection of uric acid[J]. Chem Commun, 2015,51(10):1914-1917.
    [34]Liu M, Zhang H, Li K, et al. A bio-inspired potassium and pHresponsive double-gated nanochannel[J]. Advanced FunctionalMaterials, 2015, 25(3):421-426.
    [35]Gyurcsányi RE, Vigassy T, Pretsch E. Biorecognition-modulatedion fluxes through functionalized gold nanotubules as a novel labelfree biosensing approach[J]. Chem Commun, 2003, 9(20):2560-2561.
    [36]Jágerszki G, Gyurcsányi RE, H?fler L, et al. Hybridizationmodulated ion fluxes through peptide-nucleic-acid-functionalizedgold nanotubules. A new approach to quantitative label-free DNAanalysis[J]. Nano Letters, 2007, 7(6):1609-1612.
    [37]LiSJ,LiJ,WangK,etal.Ananochannelarray-basedelectrochemicaldeviceforquantitativelabel-freeDNAanalysis[J]. ACS Nano, 2010, 4(11):6417-6424.
    [38]Gao HL, Wang M, Wu ZQ, et al. Morpholino-functionalizednanochannel array for label-free single nucleotide polymorphismsdetection[J]. Anal Chem, 2015, 87(7):3936-3941.
    [39]Yu J, Luo P, Xin C, et al. Quantitative evaluation of biologicalreaction kinetics in confined nanospaces[J]. Anal Chem, 2014,86(16):8129-8135.
    [40]Li SJ, Xia N, Yuan BQ, et al. A novel DNA sensor using a sandwichformat by electrochemical measurement of marker ion fluxes acrossnanoporous alumina membrane[J]. Electrochimica Acta, 2015,159:234-241.
    [41]Gao HL, Li CY, Ma FX, et al. A nanochannel array based devicefor determination of the isoelectric point of confined proteins[J].Physical Chemistry Chemical Physics, 2012, 14(26):9460-9467.
    [42]Li CY, Tian YW, Shao WT, et al. Solution pH regulating masstransport in highly ordered nanopore array electrode[J].Electrochemistry Communications, 2014, 42(5):1-5.
    [43]De EA, Chunglok W, Surareungchai W, et al. Nanochannels fordiagnostic of thrombin-related diseases in human blood[J].Biosens Bioelectron, 2013, 40(1):24-31.
    [44]Alfredo DE, Merko?i A. A nanochannel/nanoparticle-based filteringand sensing platform for direct detection of a cancer biomarker inblood[J]. Small, 2015, 7(5):675-682.
    [45]Wang X, Smirnov S. label-free DNA sensor based on surface chargemodulated ionic conductance[J]. ACS Nano, 2009, 3(4):1004-1010.
    [46]Chen ZM, Shen GZ, Li YP, et al. A novel biomimetic logic gatefor sensitive and selective detection of Pb(II)base on porousalumina nanochannels[J]. Electrochemistry Communications,2015, 60:83-87.
    [47]Paxton WF, Sundararajan S, Mallouk TE, et al. Chemicallocomotion[J]. Cheminform, 2006, 37(42):5420-5429.
    [48]Dr SS, Dr MP. Nanorobots:The ultimate wireless self-propelledsensing and actuating devices[J]. Cheminform, 2010, 4(9):1402-1410.
    [49]Fischer P, Ghosh A. Magnetically actuated propulsion at lowreynolds numbers:towards nanoscale control[J]. Nanoscale,2011, 3(2):557-563.
    [50]Sengupta S, Ibele ME, Sen A. Fantastic voyage:designing selfpowered nanorobots[J]. Angewandte Chemie InternationalEdition, 2012, 51(34):8434-8445.
    [51]Wang J. Can man-made nanomachines compete with naturebiomotors?[J]. ACS Nano, 2009, 3(1):4-9.
    [52]Mei Y, Solovev AA, Sanchez S, et al. Rolled-up nanotech onpolymers:from basic perception to self-propelled catalyticmicroengines[J]. Chemical Society Reviews, 2011, 40(5):2109-2119.
    [53]Patra D, Sengupta S, Duan W, et al. Intelligent, self-powered, drugdelivery systems[J]. Nanoscale, 2013, 5(4):1273-1283.
    [54]Gao W, Pei A, Feng X, et al. Organized self-assembly of Janusmicromotors with hydrophobic hemispheres[J]. J Am Chem Soc,2013, 135(3):998-1001.
    [55]Orozco J, Cheng G, Vilela D, et al. Micromotor-based high-yieldingfast oxidative detoxification of chemical threats[J]. AngewandteChemie International Edition, 2013, 125(50):13518-13521.
    [56]Soler L, Magdanz V, Fomin VM, et al. Self-propelled micromotorsfor cleaning polluted water[J]. ACS Nano, 2013, 7(11):9611-9620.
    [57]J?rup L. Treatment of heavy metal contamination[J]. BritishMedical Bulletin, 2003, 68(486):167-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700