用户名: 密码: 验证码:
黑麦草与施肥对石油-铅-镉复合污染土壤微生物活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Ryegrass and Fertilization on Microbial Activity in Oil,Lead and Cadmium Co-contaminated Soil
  • 作者:周际海 ; 陈晏敏 ; 吴雪艳 ; 程双怀 ; 王加真 ; 田胜尼 ; 程洪 ; 樊后保
  • 英文作者:ZHOU Jihai;CHEN Yanmin;WU Xueyan;CHENG Shuanghuai;WANG Jiazhen;TIAN Shengni;CHENG Hong;FAN Houbao;Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology,Nanchang Institute of Technology;College of Life Sciences,Anhui Normal University;School of Life Sciences,Anhui Agricultural University;
  • 关键词:黑麦 ; 石油-铅-镉复合污染 ; 施肥 ; 土壤微生物活性
  • 英文关键词:ryegrass;;oil,lead and cadmium co-contamination;;fertilization;;microbial activity
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:南昌工程学院江西省退化生态系统修复与流域生态水文重点实验室;安徽师范大学生命科学学院;安徽农业大学生命科学学院;
  • 出版日期:2019-01-24
  • 出版单位:水土保持学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(31460149);; 教育部留学回国人员科研启动基金项目(2015-1098);; 安徽省教育厅自然科学基金重点项目(kj2017A149);; 南昌工程学院2017年研究生创新计划项目(YJSCX20170008,YJSCX20180014);南昌工程学院2017年大学生科研训练计划项目
  • 语种:中文;
  • 页:336-341
  • 页数:6
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:X53;X172
摘要
随着工业和农业生产的发展,重金属、有毒有机物及其复合污染土壤日益增多,其修复问题在世界范围内是一项具有挑战性的任务。以砂质壤土为试验对象,模拟石油-铅-镉复合污染,共设置4个处理:(1)对照处理,复合污染土壤(CK);(2)不施肥处理,复合污染土壤+黑麦草(NF);(3)施氮肥处理,复合污染土壤+黑麦草+氮肥(F1);(4)施氮肥和磷肥处理,复合污染土壤+黑麦草+氮肥+磷肥(F2),研究种植黑麦草与施肥处理对石油-铅-镉复合污染土壤微生物活性的影响,以期为污染土壤修复及环境影响评价提供初步的理论基础。结果表明:黑麦草与施肥对复合污染土壤基础呼吸、微生物量碳均有促进作用,处理NF、F1和F2的土壤基础呼吸强度比对照处理CK最高分别增加约20.94%,24.41%,42.69%,其中施加氮、磷肥(F2)对土壤基础呼吸影响最显著;第10天时,处理NF、F1和F2土壤微生物量碳含量与对照相比分别增加约26.92%,127.43%,181.89%,施肥处理土壤微生物量碳含量显著高于不施肥处理;不同种类的酶活性对黑麦草与施肥的响应不尽相同,其中种植黑麦草与施肥均会抑制石油-铅-镉复合污染土壤中FDA水解酶活性,施加氮肥在一定时间内能较好地维持石油-铅-镉复合污染土壤内的脱氢酶活性,施肥能有效地提高并维持复合污染土壤中脲酶活性,而过氧化氢酶活性受黑麦草与施肥影响不显著。研究表明种植黑麦草配施氮、磷肥对土壤微生物基础呼吸、土壤微生物量碳及相关土壤酶活性均有增强作用,进而有利于促进土壤污染物的去除及土壤质量的改善。
        Heavy metals mixed with toxic organics are increasingly contaminating soil with the development of the industry and the modernization of agricultural production,making remediation of the contaminated soils an urgent and challenging task.In this study,we set up 4treatments with sandy loam as the test object:(1)Control group,co-contaminated soil(CK);(2)No fertilizer group,co-contaminated soil+ ryegrass(NF);(3)Nitrogen fertilizer group,co-contaminated soil+ryegrass+ nitrogen fertilizer(F1);(4)Nitrogen fertilizer and phosphate fertilizer group,co-contaminated soil+ryegrass+ nitrogen fertilizer and phosphate fertilizer(F2).In order to provide a preliminary theoretical basis for remediation of contaminated soil and environmental impact assessment,we studied the effects of ryegrass and fertilization on microbial activity in oil,lead and cadmium co-contaminated soil.The results showed that both ryegrass and fertilization had positive effects on the soil basal respiration and microbial biomass carbon in the co-contaminated soil.Compared with the control,the peaks of basal soil respiration in NF,F1 and F2increased by 20.94%,24.41%and 42.69%,respectively.The effects of nitrogen and phosphate fertilizer(F2)on soil basic respiration were most significant.On the 10 th day,the peaks of soil microbial biomass carbon in NF,F1 and F2increased by26.92%,127.43%and 181.89%,respectively,indicating that fertilization treatments were better than nonfertilization.Various soil enzymes had different responses to ryegrass and fertilizer application.The activities of FDA hydrolysis were restrained in NF,F1 and F2,while the application of nitrogen fertilizer could maintain the dehydrogenase activity in the oil-lead-cadmium co-contaminated soil at a certain time.Fertilization could continuously and effectively improve and maintain the activity of urease in the oil-lead-cadmium co-contaminated soil.But there was little impact on the catalase activity.These findings implied that the soil microbial biomass,soil microbial biomass carbon and soil enzyme activity were enhanced by the application of nitrogen and phosphate fertilizer.It meant that planting ryegrass with nitrogen and phosphate fertilizer could promote soil pollutant removal and soil quality improvement.
引文
[1]王亚男,程立娟,周启星.萱草修复石油烃污染土壤的根际机制和根系代谢组学分析[J].环境科学,2016,37(5):1978-1985.
    [2] Lacalle R G,Gómez-Sagasti M T,Artetxe U,et al.Effectiveness and ecotoxicity of zero-valent iron nanoparticles during rhizoremediation of soil contaminated with Zn,Cu,Cd and diesel[J].Data in Brief,2018,17:47-56.
    [3]周际海,袁颖红,朱志保,等.土壤有机污染物生物修复技术研究进展[J].生态环境学报,2015,24(2):343-351.
    [4] Al-Mutairi N,Bufarsan A,Al-Rukaibi F.Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels[J].Chemosphere,2008,74(1):142-148.
    [5] Simarro R,Gonzalez N,Bautista L F.Assessment of the effciency of in situ bioremediation techniques in a creosote polluted soil:change in bacterial community[J].Journal of Hazardous Materials,2013,262:158-167.
    [6]秦樊鑫,魏朝富,李红梅.重金属污染土壤修复技术综述与展望[J].环境科学与技术,2015,38(增刊2):199-208.
    [7]生态环境部.GB 36600-2018土壤环境质量-建设用地土壤污染风险管控标准(试行)[S].北京:中国标准出版社,2018:3-5.
    [8]鲁如坤.土壤农业化学分析方法[M].北京:北京农业科技出版社,2000:238-239.
    [9]韩桂琪,王彬,徐卫红,等.重金属Cd、Zn、Cu、Pb复合污染对土壤微生物和酶活性的影响[J].水土保持学报,2010,24(5):238-242.
    [10]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986:274-339.
    [11]王伟华,刘毅,唐海明,等.长期施肥对稻田土壤微生物量、群落结构和活性的影响[J].环境科学,2018,39(1):430-437.
    [12]刘自力,王红旗,孔德康,等.不同植物-微生物联合修复体系下石油烃的降解[J].环境工程学报,2018,12(1):190-197.
    [13]梁楚涛,张娇阳,艾泽民,等.黄土丘陵区不同施肥处理对土壤微生物特性的影响[J].生态学报,2018,38(10):3592-3602.
    [14]吕盛,王子芳,高明,等.秸秆不同还田方式对紫色土微生物量碳、氮、磷及可溶性有机质的影响[J].水土保持学报,2017,31(5):266-272.
    [15]程坤,周际海,金志农,等.土壤微生物活性对石油原油、铅镉及其复合污染的响应[J].环境科学学报,2017,37(5):1976-1982.
    [16]李晓楼.石油污染对土壤微生物群落多样性的影响[J].生物工程学报,2017,33(6):968-975.
    [17]刘捷豹,陈光水,郭剑芬,等.森林土壤酶对环境变化的响应研究进展[J].生态学报,2017,37(1):110-117.
    [18]唐珺瑶,贾蓉,曲东,等.生物质炭对水稻土中脱氢酶活性和铁还原过程的影响[J].水土保持学报,2016,30(3):262-267.
    [19]褚素贞,张乃明,史静.云南省设施土壤过氧化氢酶活性变化趋势研究[J].中国农学通报,2015,31(15):220-225.
    [20]卢冠男,夏梦洁,贾丹阳,等.我国14种典型土壤脲酶、脱氢酶活性对汞胁迫的响应[J].环境科学学报,2014,34(7):1788-1793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700