用户名: 密码: 验证码:
晋西黄土区苹果树边材液流速率的方位差异研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Azimuthal Variation of Sap Flow Velocity of Apple Trees in Loess Plateau Area, Western Shanxi Province
  • 作者:党宏忠 ; 冯金超 ; 却晓娥 ; 王檬檬 ; 张金鑫
  • 英文作者:DANG Hong-zhong;FENG Jin-chao;QUE Xiao-e;WANG Meng-meng;ZHANG Jin-xin;Institute of Desertification Studies, Chinese Academy of Forestry;College of Desert Control Science and Engineering, Inner Mongolia Agricultural University;Research Institute of Forestry, Chinese Academy of Forestry;
  • 关键词:液流 ; 大汽水分亏缺 ; 冠层净辐射 ; 苹果树 ; 边材 ; 黄土高原
  • 英文关键词:sap flow velocity;;vapor pressure deficit;;net radiation above canopy;;apple trees;;sapwood;;the Loess Plateau
  • 中文刊名:林业科学研究
  • 英文刊名:Forest Research
  • 机构:中国林业科学研究院荒漠化所;内蒙古农业大学沙漠治理学院;中国林业科学研究院林业研究所;
  • 出版日期:2019-04-15
  • 出版单位:林业科学研究
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划“黄土残塬沟壑区水土保持型景观优化与特色林产业技术及示范”(2016YFC0501704)
  • 语种:中文;
  • 页:50-56
  • 页数:7
  • CN:11-1221/S
  • ISSN:1001-1498
  • 分类号:S661.1
摘要
[目的]通过对苹果树不同方位边材液流速率的测定与比较,明确苹果树液流速率的方位特征,为通过液流测定来估算单株蒸腾提供依据。[方法]利用热扩散技术(TDP)对黄土区苹果树主要生长季4个方位边材液流速率及土壤水分、气象因子进行同步、连续监测。[结果]苹果树树干边材液流速率(J_s)具有显著的方位差异(P<0.01),其中北侧J_s最高,整个生长季日平均值达189.3 cm·d~(-1),其次为南侧(为北侧的83%)、东侧(北侧的80%),西侧最小(北侧的63%)。各方位J_s总体均表现出5—8月间递增、9—10月间递减、11月基本停止的季节动态,且均与冠层净辐射(R_n)、大汽水分亏缺(VPD)间呈较好的指数正相关关系。在典型晴天,不同方位J_s的日峰值时刻均明显提前于VPD的峰值,平均提前约1.6 h(最大2.43 h),且提前的时长与VPD日平均值呈线性递增关系。当VPD高于2.0~2.2 kPa时,J_s不再随VPD的增加而上升;不同方位间J_s峰值时刻与VPD(P=0.97)峰值时刻间的差异不显著。[结论]苹果树边材液流速率存在着明显的方位差异(P<0.01),其中北、南方位液流速率较高,东、西方位液流速率较低。不同方位液流传输受大气环境影响的过程具有一致性。为提高果树液流通量估算的精度,在实际测定中应考虑方位差异。
        [Objective] To determine the azimuthal character of sap flow velocity(J_s) of apple trees. [Method] the thermal dissipation probe technology(TDP) was used to simultaneously and continuously monitor the sap flow velocity in the four locations of apple trees during the whole growing season in the loess region. The soil moisture and meteorological factors were measured simultaneously, too. [Result] The J_s was significant different among directions(P<0.01). The highest J_s in the sapwood was observed in the north side with an average of 189.3 cm per day over the entire growing season, followed by that in the south side(83% of the north side) and the east side(80% of the north side). The J_s from the west side was the smallest(63% of the north side). The J_s of all sides showed seasonal dynamics, i.e. increasing in May-August, dropping in September-October, and nearly stopped in November. The J_s showed an exponentially increasing relationship with the net radiation above canopy(R_n) as well as with vapor pressure deficit(VPD). On a typical sunny day, the diurnal peak time of J_s in different directions appeared earlier than that of the VPD(1.6 hours in average with the maximum of 2.43 hours). The length of advancing time increased linearly with the increasing of the daily mean VPD. The time advancing reflects that the peak J_s of apple was limited by VPD while over 2.0~2.2 kPa. The difference of time advancing between J_s and VPD in four directions was not significant(P = 0.97). [Conclusion] There are obvious azimuthal differences(P < 0.01) in the sap flow velocity of the apple tree. The J_s in the north side and the south side are high than that of the east or the west side. However, the process of sap flow in different directions is consistent with the influence of atmospheric environment. In order to improve the accuracy of estimating sap flux of apple trees, the azimuthal difference should be taken into account in actual measurement.
引文
[1]B?rja I,Světlík J,Nadezhdin V,et al.Sap flux-a real time assessment of health status in Norway spruce[J].Scandinavian Journal of Forest Research,2016,31(4):450-457.
    [2]Nadezhdina N,Cermák J,Downey A,et al.Sap flow index as an indicator of water storage use[J].Journal of Hydrology and Hydromechanics,2015,63(2):124-133.
    [3]Roberts J.The role of plant physiology in hydrology:looking backwards and forwards.(Special issue:A view from the watershed revisited.)[J].Hydrology and Earth System Sciences,2007,11(1):256-269.
    [4]Aroca R.Plant Responses to Drought Stress:From Morphological to Molecular Features[M].Springer,2012.
    [5]Ryan M G.Tree responses to drought[J].Tree Physiology,2011,31(3):237-239.
    [6]Lu P.A Direct method for estimating the average sap flux density using a modified Granier measuring system[J].Functional Plant Biology,2001,24(28):701-705.
    [7]Lubinda A K,Murray-Hudson M,Green S.Sap flow variation in selected riparian woodland species in the Okavango Delta,Botswana[J].African Journal of Ecology,2017,55(4):654-663.
    [8]Nadezhdina N.Revisiting the Heat Field Deformation(HFD)method for measuring sap flow[J].Forest-Biogeosciences and Forestry,2018,11(1):118-130.
    [9]Zhao X H,Zhao P,Zhang Z Z,et al.Sap flow-based transpiration in Phyllostachys pubescens:applicability of the TDP methodology,age effect and rhizome role[J].Trees-Structure and Function,2017,31(2):765-779.
    [10]Granier A.A new method of sap flow measurement in tree stems[J].Annales Des Sciences Forestieres,1985,42(2):193-200.
    [11]Tsuruta K,Kume T,Komatsu H,et al.Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates[J].Journal of Forest Research,2010,15(6):398-403.
    [12]Kume T,Otsuki K,Du S,et al.Spatial variation in sap flow velocity in semiarid region trees:its impact on stand-scale transpiration estimates[J].Hydrological Processes,2012,26(8):1161-1168.
    [13]白志强,刘华,佘春燕,等.西伯利亚落叶松树干液流的动态变化[J].河北农业大学学报,2016,39(3):49-54.
    [14]马建鹏,汪有科,陈滇豫,等.不同时间尺度上枣树树干液流的变异特性[J].干旱地区农业研究,2016,34(3):95-101.
    [15]徐丹丹,尹立河,侯光才,等.毛乌素沙地旱柳和小叶杨树干液流密度及其与气象因子的关系[J].干旱区研究,2017,34(2):375-382.
    [16]李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301-305.
    [17]Cermák J,Nadezhdina N,Fernández E,et al.Application of a sap flow technique for characterizing the whole tree architecture,crowns and roots[J].Acta Horticulturae,2009,846(846):219-228.
    [18]Komatsu H,Shinohara Y,Kume T,et al.Does measuring azimuthal variations in sap flux lead to more reliable stand transpiration estimates?[J].Hydrological Processes,2016,30(13):2129-2137.
    [19]毕华兴,云雷,朱清科.晋西黄土区农林复合系统种间关系研究[M]:北京:科学出版社,2011.189.
    [20]张静,王力,韩雪,等.不同时间尺度下黄土塬区19年生苹果树干液流速率与环境因子的关系[J].中国农业科学,2016,49(13):2583-2592.
    [21]蔡智才,毕华兴,许华森,等.晋西黄土区苹果花生间作系统光合有效辐射及其对花生生长的影响[J].西北农林科技大学学报:自然科学版,2017,45(4):51-58.
    [22]Dang H,Zha T,Zhang J,et al.Radial profile of sap flow velocity in mature Xinjiang poplar(Populus alba L.var.pyramidalis)in Northwest China[J].Journal of Arid Land,2014,6(5):612-627.
    [23]党宏忠,张劲松,赵雨森.应用热扩散技术对柠条锦鸡儿主根液流速率的研究[J].林业科学,2010,46(3):29-36.
    [24]Granier A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J].Tree Physiology,1987,3(4):309-320.
    [25]Lu P,Urban L,Zhao P.Granier's thermal dissipation probe(TDP)method for measuring sap flow in trees:theory and practice[J].Acta Botanica Sinica,2004,46(6):631-646.
    [26]Kume T,Komatsu H,Kuraji K,et al.Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a bornean tropical rainforest[J].Agricultural and Forest Meteorology,2008,148(6-7):1181-1189.
    [27]赵平,饶兴权,马玲,等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J].生态学报,2006,26(12):4050-4058.
    [28]党宏忠,杨文斌,李卫,等.新疆杨树干液流的径向变化及时滞特征[J].生态学报,2015,35(15):5110-5120.
    [29]党宏忠,杨文斌,李卫,等.民勤绿洲二白杨树干液流的径向变化及时滞特征[J].应用生态学报,2014,25(9):2501-2510.
    [30]刘家霖,满秀玲,胡悦.兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J].林业科学研究,2016,29(5):726-734.
    [31]赵春彦,司建华,冯起,等.荒漠河岸胡杨(Populus euphratica)树干液流的时滞效应[J].中国沙漠,2014,34(5):1254-1260.
    [32]徐世琴,吉喜斌,金博文.典型荒漠植物沙拐枣茎干液流密度动态及其对环境因子的响应[J].应用生态学报,2016,27(2):345-353.
    [33]池波,蔡体久,满秀玲,等.大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J].北京林业大学学报,2013,35(4):21-26.
    [34]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3):36-42.
    [35]Morgan H D,Barton C.Forest-scale sap flux responses to rainfall in a dryland eucalyptus plantation[J].Plant and Soil,2008,305(1-2):131-144.
    [36]Saugier B,Granier A,Pontailler J Y,et al.Transpiration of a boreal pine forest measured by branch bag,sap flow and micrometeorological methods[J].Tree Physiology,1997,17(8-9):511-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700