用户名: 密码: 验证码:
碳纳米材料的环境降解及其降解机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Environmental degradation of carbon nanomaterials and related degradation mechanisms
  • 作者:刘卓苗 ; 徐东方 ; 魏永鹏 ; 徐立娜 ; 李玥 ; 党永辉 ; 王震宇 ; 赵建
  • 英文作者:Zhuomiao Liu;Dongfang Xu;Yongpeng Wei;Lina Xu;Yue Li;Yonghui Dang;Zhenyu Wang;Jian Zhao;Key Lab of Marine Environment and Ecology, Ministry of Education, Institute of Costal Environmental Pollution Control, Ocean University of China;School of Environment and Civil Engineering, Jiangnan University;Qingdao National Laboratory for Marine Science and Technology, Marine Ecology and Environmental Science Laboratory;
  • 关键词:碳纳米材料 ; 生物降解 ; 非生物降解 ; 降解机制
  • 英文关键词:carbon nanomaterials;;biodegradation;;abiotic degradation;;degradation mechanism
  • 中文刊名:中国科学:化学
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:中国海洋大学近海环境污染控制研究所海洋环境与生态教育部重点实验室;江南大学环境污染过程与控制研究所;青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室;
  • 出版日期:2018-12-25 09:21
  • 出版单位:中国科学:化学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金(编号:41573092,41530642);; 山东省自然科学杰出青年基金(编号:JQ201805);; 山东省海外泰山学者计划(编号:tshw20130955);; 中央高校基本科研业务费专项(201841010)资助项目
  • 语种:中文;
  • 页:79-92
  • 页数:14
  • CN:11-5838/O6
  • ISSN:1674-7224
  • 分类号:TQ127.11;TB383.1
摘要
碳纳米材料(carbon nanomaterials, CNMs)是一类具有优异物理化学特性的新型材料. CNMs在广泛应用过程中不可避免地进入环境,对环境中的生物体造成一定危害.同时,环境中的CNMs在自然条件下可能会发生降解,而降解后的CNMs由于材料结构和性质上的改变进而影响其生物毒性.因此,亟需对CNMs环境降解途径系统地进行探究和总结.本综述围绕CNMs的生物降解和非生物降解这两种主要的降解方式展开.生物降解包括酶降解、细菌降解和细胞降解,非生物降解则重点阐述了光降解和(光)化学降解这两大过程.通过系统总结降解的反应条件、降解终点、中间产物和终产物等降解特性,最终揭示了CNMs环境降解的规律和机制.此外,我们结合尚未明了的降解机制和降解的环境限制条件对CNMs降解研究中面临的挑战和发展方向进行了展望.本综述为深入理解CNMs的环境归趋和长期环境风险提供了重要的理论支持.
        Carbon nanomaterials(CNMs) with unique physicochemical properties are widely applied in various fields,thus inevitably being released into the environment and posing threat to organisms and human beings. Simultaneously,CNMs in the environment could be degraded under natural conditions, and the toxicity of CNMs to organisms will be altered because of the changes in the structural and surface properties of CNMs. Therefore, a systematical summarization on the environmental degradation of CNMs is in urgent need. In this review, degradation routes of CNMs were addressed by dividing into biodegradation and abiotic degradation. Biodegradation included enzymatic degradation, microbial degradation, and cell degradation, while abiotic degradation included photodegradation and chemical(photochemical) degradation. All the above degradation routes were elaborated in the present review. The degradation of CNMs in different natural conditions was thoroughly summarized, and the degradation mechanisms were also concluded. In addition, current challenges on the investigations of CNMs degradation were prospected. The review could provide important information for better understanding the environmental fates and biological effects of CNMs.
引文
1 Li L,Wen Y,Xu Q,Xu L,Liu D,Liu G,Huang Q.Curr Pharm Des,2015,21:3191-3198
    2 Jariwala D,Sangwan VK,Lauhon LJ,Marks TJ,Hersam MC.Chem Soc Rev,2013,42:2824-2860
    3 S?ndulescu R,Terti?M,Cristea C,Bodoki E.Biosensors-Micro Nanoscale Appl,2015,5-7
    4 Lu X,Yim WL,Suryanto BHR,Zhao C.J Am Chem Soc,2015,137:2901-2907
    5 Ghaffarzadeh K.Graphene,2D Materials and Crabon Nanotubes:Markets,Technologies and Opportunities.http://www.idtechex.com/research/reports/graphene-2d-materials-and-carbon-nanotubes-markets-technologie-and-opportunities-2017-2027-000530.asp
    6 FarréM,Sanchís J,BarcelóD.Tr AC Trends Anal Chem,2011,30:517-527
    7 Felix LC,Ede JD,Snell DA,Oliveira TM,Martinez-Rubi Y,Simard B,Luong JHT,Goss GG.Carbon,2016,104:78-89
    8 Pissuwan D,Somkid K,Kongseng S,Sukwong P,Yoovathaworn K.Micro Nano Lett,2016,11:183
    9 Wu W,Yan L,Wu Q,Li Y,Li Q,Chen S,Yang Y,Gu Z,Xu H,Yin ZQ.Nanotoxicology,2016,10:1329-1340
    10 Zhao J,Cao X,Wang Z,Dai Y,Xing B.Water Res,2017,111:18-27
    11 Zhao J,Wang Z,White JC,Xing B.Environ Sci Technol,2014,48:9995-10009
    12 Duan G,Kang SG,Tian X,Garate JA,Zhao L,Ge C,Zhou R.Nanoscale,2015,7:15214-15224
    13 Lu K,Huang Q,Wang P,Mao L.Environ Sci Technol,2015,49:8558-8565
    14 Avanasi R,Jackson WA,Sherwin B,Mudge JF,Anderson TA.Environ Sci Technol,2014,48:2792-2797
    15 Chae SR,Hunt DE,Ikuma K,Yang S,Cho J,Gunsch CK,Liu J,Wiesner MR.Water Res,2014,65:282-289
    16 Allen BL,Kichambare PD,Gou P,Vlasova II,Kapralov AA,Konduru N,Kagan VE,Star A.Nano Lett,2008,8:3899-3903
    17 Vlasova II,Sokolov AV,Chekanov AV,Kostevich VA,Vasilyev VB.Russ J Bioorg Chem,2011,37:453-463
    18 Hou WC,Chowdhury I,Goodwin Jr.DG,Henderson WM,Fairbrother DH,Bouchard D,Zepp RG.Environ Sci Technol,2015,49:3435-3443
    19 Xing WL,Lalwani G,Rusakova I,Sitharaman B.Part Part Syst Charact,2014,31:745-750
    20 Farrera C,Bhattacharya K,Lazzaretto B,Andón FT,Hultenby K,Kotchey GP,Star A,Fadeel B.Nanoscale,2014,6:6974-6983
    21 Kotchey GP,Gaugler JA,Kapralov AA,Kagan VE,Star A.J Mater Chem B,2012,1:302-309
    22 Gitsov I,Simonyan A,Wang L,Krastanov A,Tanenbaum SW,Kiemle D.J Polym Sci A,2012,50:119-126
    23 Schreiner KM,Filley TR,Blanchette RA,Bowen BB,Bolskar RD,Hockaday WC,Masiello CA,Raebiger JW.Environ Sci Technol,2009,43:3162-3168
    24 Lee J,Cho M,Fortner JD,Hughes JB,Kim JH.Environ Sci Technol,2009,43:4878-4883
    25 Bai H,Jiang W,Kotchey GP,Saidi WA,Bythell BJ,Jarvis JM,Marshall AG,Robinson RAS,Star A.J Phys Chem C,2014,118:10519-10529
    26 Allen BL,Kotchey GP,Chen Y,Yanamala NVK,Klein-Seetharaman J,Kagan VE,Star A.J Am Chem Soc,2009,131:17194-17205
    27 Russier J,Ménard-Moyon C,Venturelli E,Gravel E,Marcolongo G,Meneghetti M,Doris E,Bianco A.Nanoscale,2011,3:893-896
    28 Zhao Y,Allen BL,Star A.J Phys Chem A,2011,115:9536-9544
    29 Kotchey GP,Allen BL,Vedala H,Yanamala N,Kapralov AA,Tyurina YY,Klein-Seetharaman J,Kagan VE,Star A.ACS Nano,2011,5:2098-2108
    30 Bhattacharya K,Sacchetti C,El-Sayed R,Fornara A,Kotchey GP,Gaugler JA,Star A,Bottini M,Fadeel B.Nanoscale,2014,6:14686-14690
    31 Zhao Y,Burkert SC,Tang Y,Sorescu DC,Kapralov AA,Shurin GV,Shurin MR,Kagan VE,Star A.J Am Chem Soc,2015,137:675-684
    32 Lalwani G,Xing W,Sitharaman B.J Mater Chem B,2014,2:6354-6362
    33 Chandrasekaran G,Choi SK,Lee YC,Kim GJ,Shin HJ.J Indust Eng Chem,2014,20:3367-3374
    34 Zhang C,Chen W,Alvarez PJJ.Environ Sci Technol,2014,48:7918-7923
    35 Chen M,Qin X,Zeng G.Trends Biotech,2017,35:836-846
    36 Chen M,Qin X,Li J,Zeng G.RSC Adv,2016,6:3592-3599
    37 Chouhan RS,Qureshi A,Yagci B,Gülgün MA,Ozguz V,Niazi JH.Chem Eng J,2016,298:1-9
    38 Salas EC,Sun Z,Lüttge A,Tour JM.ACS Nano,2010,4:4852-4856
    39 Wang G,Qian F,Saltikov CW,Jiao Y,Li Y.Nano Res,2011,4:563-570
    40 Akhavan O,Ghaderi E.Carbon,2012,50:1853-1860
    41 Gurunathan S,Han JW,Eppakayala V,Kim JH.Colloids Surfs B,2013,102:772-777
    42 Liu L,Zhu C,Fan M,Chen C,Huang Y,Hao Q,Yang J,Wang H,Sun D.Nanoscale,2015,7:13619-13628
    43 Zhang L,Petersen EJ,Habteselassie MY,Mao L,Huang Q.Environ Pollut,2013,181:335-339
    44 You Y,Das KK,Guo H,Chang CW,Navas-Moreno M,Chan JW,Verburg P,Poulson SR,Wang X,Xing B,Yang Y.Environ Sci Technol,2017,51:2068-2076
    45 Berry TD,Filley TR,Clavijo AP,Bischoff Gray M,Turco R.Environ Sci Technol,2017,51:1387-1394
    46 Zhu C,Liu L,Fan M,Liu L,Dai B,Yang J,Sun D.RSC Adv,2014,4:55044-55047
    47 Parks AN,Chandler GT,Ho KT,Burgess RM,Ferguson PL.Environ Toxicol Chem,2015,34:247-251
    48 Kotchey GP,Zhao Y,Kagan VE,Star A.Adv Drug Deliver Rev,2013,65:1921-1932
    49 Kagan VE,Konduru NV,Feng W,Allen BL,Conroy J,Volkov Y,Vlasova II,Belikova NA,Yanamala N,Kapralov A,Tyurina YY,Shi J,Kisin ER,Murray AR,Franks J,Stolz D,Gou P,Klein-Seetharaman J,Fadeel B,Star A,Shvedova AA.Nat Nanotech,2010,5:354-359
    50 Nunes A,Bussy C,Gherardini L,Meneghetti M,Herrero MA,Bianco A,Prato M,Pizzorusso T,Al-Jamal KT,Kostarelos K.Nanomedicine,2012,7:1485-1494
    51 Andón FT,Kapralov AA,Yanamala N,Feng W,Baygan A,Chambers BJ,Hultenby K,Ye F,Toprak MS,Brandner BD,Fornara A,KleinSeetharaman J,Kotchey GP,Star A,Shvedova AA,Fadeel B,Kagan VE.Small,2013,9:2721-2729
    52 Girish CM,Sasidharan A,Gowd GS,Nair S,Koyakutty M.Adv Healthc Mater,2013,2:1489-1500
    53 Kagan VE,Kapralov AA,St.Croix CM,Watkins SC,Kisin ER,Kotchey GP,Balasubramanian K,Vlasova II,Yu J,Kim K,Seo W,Mallampalli RK,Star A,Shvedova AA.ACS Nano,2014,8:5610-5621
    54 Zhang M,Yang M,Bussy C,Iijima S,Kostarelos K,Yudasaka M.Nanoscale,2015,7:2834-2840
    55 Elgrabli D,Dachraoui W,Ménard-Moyon C,Liu XJ,Bégin D,Bégin-Colin S,Bianco A,Gazeau F,Alloyeau D.ACS Nano,2015,9:10113-10124
    56 Bussy C,Hadad C,Prato M,Bianco A,Kostarelos K.Nanoscale,2015,8:590-601
    57 Ding Y,Tian R,Yang Z,Chen J,Lu N.J Mater Sci,2017,28:7
    58 Mukherjee SP,Gliga AR,Lazzaretto B,Brandner B,Fielden M,Vogt C,Newman L,Rodrigues AF,Shao W,Fournier PM,Toprak MS,Star A,Kostarelos K,Bhattacharya K,Fadeel B.Nanoscale,2018,10:1180-1188
    59 Reber LL,Gillis CM,Starkl P,J?nsson F,Sibilano R,Marichal T,Gaudenzio N,Bérard M,Rogalla S,Contag CH,Bruhns P,Galli SJ.J Exp Med,2017,214:1249-1258
    60 Kuila T,Bose S,Khanra P,Mishra AK,Kim NH,Lee JH.Carbon,2012,50:914-921
    61 Zhang CZ,Li T,Yuan Y,Xu J.Chemosphere,2016,153:531-540
    62 Hou WC,Henderson WM,Chowdhury I,Goodwin DG Jr.,Chang X,Martin S,Fairbrother DH,Bouchard D,Zepp RG.Carbon,2016,110:426-437
    63 Andryushina NS,Stroyuk OL,Yanchuk IB,Yefanov AV.Colloid Polym Sci,2014,292:539-546
    64 Du T,Adeleye AS,Keller AA,Wu Z,Han W,Wang Y,Zhang C,Li Y.Water Res,2017,124:372-380
    65 Bitter JL,Yang J,Beigzadeh Milani S,Jafvert CT,Fairbrother DH.Environ Sci-Nano,2014,1:324-337
    66 Li T,Zhang CZ,Fan X,Li Y,Song M.Chem Eng J,2017,323:37-46
    67 Fan CL,Li W,Li X,Zhao SJ,Zhang L,Mo YJ,Cheng RM.Chin Sci Bull,2007,52:2054-2062
    68 Hou WC,He CJ,Wang YS,Wang DK,Zepp RG.Environ Sci Technol,2016,50:3494-3502
    69 Ren M,Wang X,Dong C,Li B,Liu Y,Chen T,Wu P,Cheng Z,Liu X.Phys Chem Chem Phys,2015,17:24056-24062
    70 Hwang YS,Li Q.Environ Sci Technol,2010,44:3008-3013
    71 Chan SP,Chen G,Gong XG,Liu ZF.Phys Rev Lett,2003,90:086403
    72 Wang F,Wang F,Gao G,Chen W.Environ Toxicol Chem,2015,34:1975-1982
    73 Feng Y,Lu K,Mao L,Guo X,Gao S,Petersen EJ.Water Res,2015,84:49-57
    74 Asyadi Azam M,Ambri Mohamed M,Shikoh E,Fujiwara A.Jpn J Appl Phys,2010,49:02BA04
    75 Chen G,Sumanasekera GU,Pradhan BK,Gupta R,Eklund PC,Bronikowski MJ,Smalley RE.J Nanosci Nanotechnol,2002,2:621-626
    76 Li M,Boggs M,Beebe TP,Huang CP.Carbon,2008,46:466-475
    77 Leconte N,Moser J,Ordejón P,Tao H,Lherbier A,Bachtold A,Alsina F,Sotomayor Torres CM,Charlier JC,Roche S.ACS Nano,2010,4:4033-4038
    78 Huh S,Park J,Kim YS,Kim KS,Hong BH,Nam JM.ACS Nano,2011,5:9799-9806
    79 Simmons JM,Nichols BM,Baker SE,Marcus MS,Castellini OM,Lee CS,Hamers RJ,Eriksson MA.J Phys Chem B,2006,110:7113-7118
    80 Xia T,Fortner JD,Zhu D,Qi Z,Chen W.Environ Sci Technol,2015,49:11468-11475
    81 Labille J,Masion A,Ziarelli F,Rose J,Brant J,Villieras F,Pelletier M,Borschneck D,Wiesner MR,Bottero JY.Langmuir,2009,25:11232-11235
    82 Hou WC,Jafvert CT.Environ Sci Technol,2009,43:362-367
    83 Shi L,Squier TC,Zachara JM,Fredrickson JK.Mol Microbiol,2007,65:12-20
    84 Tegou E,Magana M,Katsogridaki AE,Ioannidis A,Raptis V,Jordan S,Chatzipanagiotou S,Chatzandroulis S,Ornelas C,Tegos GP.Biomaterials,2016,89:38-55
    85 Bian J,Xi L,Li J,Xiong Z,Huang C,Lange KM,Tang J,Shalom M,Zhang RQ.Chem Asian J,2017,12:1005-1012
    86 Vel Leitner NK,Roshani B.Water Res,2010,44:2058-2066
    87 Li JL.Theoretical investigations on the mechanisms for several important haloid atomic radical-molecule reactions.Dissertation for the Doctoral Degree.Jilin:Jilin University,2007(in Chinese)[李吉来.几类重要卤素原子自由基-分子反应机理的理论研究.博士学位论文.吉林:吉林大学,2007]
    88 Parker KM,Reichwaldt ES,Ghadouani A,Mitch WA.Environ Sci Technol,2016,50:8505-8513
    89 Vidya Lekshmi KP,Yesodharan S,Yesodharan EP.Eur Chem Bull,2017,6:177-191
    90 Parikh SJ,Mukome FND,Zhang X.Colloids Surfs B,2014,119:38-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700