用户名: 密码: 验证码:
水稻和小麦根尖细胞壁多糖的铝积累能力比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of aluminum accumulation ability of cell wall polysaccharides in Oryza sativa and Triticum aestivum root tips under aluminum toxicity
  • 作者:刘庆 ; 王智怡 ; 吴坤 ; 邢承华 ; 常虹 ; 饶玉春 ; 蔡妙珍
  • 英文作者:Liu Qing;Wang Zhi-Yi;Wu Kun;Xing Cheng-Hua;Chang Hong;Rao Yu-Chun;Cai Miao-Zhen;School of Geography and Environmental Sciences,Zhejiang Normal University;Jinhua Polytechnic;School of Chemistry and Life Sciences,Zhejiang Normal University;
  • 关键词:水稻 ; 小麦 ; 铝毒 ; 细胞壁 ; 细胞壁多糖
  • 英文关键词:Oryza sativa;;Triticum aestivum;;Aluminum toxicity;;Cell wall;;Cell wall polysaccharide
  • 中文刊名:植物科学学报
  • 英文刊名:Plant Science Journal
  • 机构:浙江师范大学地理与环境科学学院;金华职业技术学院;浙江师范大学化学与生命科学学院;
  • 出版日期:2019-08-14
  • 出版单位:植物科学学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(31101599);; 浙江省自然科学基金项目(LY15C150004);; 浙江省亚热带土壤与植物营养重点研究实验室项目~~
  • 语种:中文;
  • 页:105-112
  • 页数:8
  • CN:42-1817/Q
  • ISSN:2095-0837
  • 分类号:S511;S512.1
摘要
采用水培法比较4种禾本科植物水稻(Oryza sativa L.)、玉米(Zea mays L.)、高粱(Sorghum bicolor(L.) Moench)和小麦(Triticum aestivum L.) 8个基因型的抗铝(Al)能力,并对他们在Al积累后细胞壁的多糖组分进行分析。结果显示,在5~200μmol/L Al处理下,水稻抗Al能力较强,而小麦抗Al能力较弱。在50μmol/L Al处理下,小麦根尖的果胶和半纤维素1含量的增幅明显高于水稻。水稻基因型‘日本晴’与‘浙辐802’的细胞壁Al含量分别占根尖总Al含量的78. 7%和91. 6%;小麦基因型‘扬麦18’与‘扬麦16’Al含量分别占根尖总Al含量的64.9%和72.1%。Al吸附-解吸实验结果显示,小麦根尖细胞壁上Al的吸附量高于水稻。研究结果表明,细胞壁是Al积累的主要部位,对Al敏感的水稻和小麦基因型细胞壁中的Al主要分布在果胶中;而对Al耐性较强的水稻和小麦基因型细胞壁中的Al主要分布在半纤维素1中。
        Hydroponics were used to compare eight genotypes of four Poaceae plants( Oryza sativa L.,Zea mays L.,Sorghum bicolor( L.) Moench,and Triticum aestivum L.). We investigated their resistance to aluminum( Al) and analyzed the polysaccharide components of the cell wall after Al accumulation. Results revealed that under 5-200 μmol/L Al treatment,rice exhibited the strongest Al resistance,whereas wheat demonstrated the weakest,thus further experiments were carried out on rice and wheat. Under 50 μmol/L Al treatment,the content of pectin and hemicellulose 1 was higher in the wheat root tips than that in the rice root tips. Furthermore,Al content in the cell wall of ‘Nipponbare’ and ‘Zhefu 802’ seedlings accounted for 78.7% and 91.6% of that in the root tips,and in ‘Yangmai 18’ and ‘Yangmai16’ seedlings accounted for 64.9% and 72.1% of that in the root tips. The Al adsorption-desorption tests further showed that Al uptake in the wheat root tip cell wall was higher than that for rice,whereas the desorption rate was lower than that for rice. The cell wall was the main site for Al accumulation,the pectin component in the cell wall was the major binding site of Al-sensitive rice and wheat genotypes,and the hemicellulose 1 component was the major binding site of Al-tolerant rice and wheat genotypes.
引文
[1]吴亚,陈思,张卫红,刘大林,范吉标,等.多花黑麦草对铝胁迫的生长生理响应[J].植物科学学报,2018,36(5):755-760.Wu Y,Chen S,Zhang WH,Liu DL,Fan JB,et al.Growth and physiological responses of Lolium multiflorum to aluminum stress[J].Plant Science Journal,2018,36(5):755-760.
    [2]Yang JL,Zhu XF,Peng YX,Zheng C,Li GX,et al.Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis[J].Plant Physiol,2011,155(4):1885-1892.
    [3]Yang Y,Dai CY,Guo LP,Qu Y,Yang XY,et al.Salicylic acid reduces the accumulation of aluminum in root cell wall pectin via the NO signaling pathway[J].Plant Soil,2018,430(1-2):171-184.
    [4]Yang JL,Li YY,Zhang YJ,Zhang SS,Wu YR,et al.Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex[J].Plant Physiol,2008,146(2):602-611.
    [5]Zhu XF,Wan JX,Wu Q,Zhao XS,Zheng S,Shen RF.PARVUS affects aluminium sensitivity by modulating the structure of glucuronoxylan in Arabidopsis thaliana[J].Plant Cell Environ,2017,40(9):1916-1925.
    [6]Wan JX,Zhu XF,Wang YQ,Liu LY,Zhang BC,et al.Xyloglucan fucosylation modulates arabidopsis cell wall hemicellulose aluminium binding capacity[J].Sci Rep,2018,8(1):428-437.
    [7]Safari M,Ghanati F,Safarnejad MR,Chashmi NA.The contribution of cell wall composition in the expansionof Camellia sinensis seedlings roots in response to aluminum[J].Planta,2018,247(2):381-392.
    [8]Zhu CQ,Zhang JH,Sun LM,Zhu LF,Abliz B,et al.Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice[J].Front Plant Sci,2018,9:1-14.
    [9]Wang W,Zhao XQ,Chen RF,Dong XY,Lan P,et al.Altered cell wall properties are responsible for ammoniumreduced aluminium accumulation in rice roots[J].Plant Cell Environ,2015,38(7):1382-1390.
    [10]Sun CL,Lu LL,Yu Y,Liu LJ,Hu Y,et al.Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots[J].J Exp Bot,2016,67(3):979-989.
    [11]Ma JF,Ryan PR,Delhaize E.Aluminium tolerance in plants and the complexing role of organic acids[J].Trends Plant Sci,2001,6(6):273-278.
    [12]Lin XY,Zhang YS,Luo AC.Differences of aluminum tolerance on wheat genotypes and its screening techniques[J].Plant Nutri Fertil Sci,2001,7(1):64-70.
    [13]Wang C,Zheng MM,Hu AY,Zhu CQ,Shen RF.Diazotroph abundance and community composition in an acidic soil in response to aluminum-tolerant and aluminumsensitive maize(Zea mays L.)cultivars under two nitrogen fertilizer forms[J].Plant Soil,2018,424(1-2):463-478.
    [14]Famoso AN,Clark RT,Shaff JE,Craft E,Mccouch SR,Kochian LV.Development of a novel aluminum tolerance phenotyping plantform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms[J].Plant physiol,2010,153(4):1678-1691.
    [15]Delhaize E,Ryan PR.Aluminum toxicity and tolerance in plants[J].Plant Cell Physiol,1995,107(2):315-321.
    [16]Horst WJ,Wang YX,Eticha D.The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants:a review[J].Ann Bot,2010,106(1):1-13.
    [17]郑绍建.细胞壁在植物抗营养逆境中的作用及其分子生理机制[J].中国科学:生命科学,2014,44(4):334-341.Zheng SJ.The role of cell wall in plant anti-nutritional stress and its molecular physiological mechanism[J].Chinese Science:Life Sciences,2014,44(4):334-341.
    [18]Degenhard J,Larsen PB,Howell SH,Kochian LV.Aluminum resistance in the arabidopsis mutantalr-104 is caused by an aluminum-induced increase in rhizosphere pH[J].Plant Physiol,1998,117:19-27.
    [19]Tayor GJ.Current views of the aluminum stress response:the physiological basis of tolerance[J].Curr Top Plant Biol Med Physiol,1991,10:57-93.
    [20]Richard L,Qin LX,Gadal P,Goldberg R.Molecular cloning and characterisation of a putative pectin methylesterase cDNA in Arabidopsis thaliana(L.)[J].FEBS Lett,1994,355(2):135-139.
    [21]Kochian LV,Pifieros MA,Liu JP,Jurandir VM.Plant adaptation to acid soils:the molecular basis for crop alumium resistance[J].Annu Rev Plant Biol,2015,66:571-598.
    [22]Liu J,Pifieros M,Kochian LV.The role of alumium sensing and signaling in plant alumium resistance[J].J Integr Plant Biol,2014,56(3):221-230.
    [23]Ma JF,Shen RF,Zhao ZQ,Wissuwa M,Takeuchi Y,et al.Response of rice to Al stress and identification of quantitative trait loci for Al tolerance[J].Plant Cell Physiol,2002,43(6):652-659.
    [24]Lou HQ,Gong YL,Fan W,Xu JM,Liu Y,et al.A formate dehydrogenase confers tolerance to aluminum and low pH[J].Plant physiol,2008,146(2):602-611.
    [25]Liu WJ,Xu FJ,LüT,Zhou WW,Chen Y,et al.Spatial responses of antioxidative system to aluminum stress in roots of wheat(Triticum aestivum L.)plants[J].Sci Total Environ,2018,627:462-469.
    [26]Chang YC,Yamamoto Y,Matsumoto H.Accumulation of aluminium in the cell wall pectin in cultured tobacco(Nicotiana tabacum L.)cells treated with a combination of aluminium and iron[J].Plant Cell Environ,1999,22(8):1009-1017.
    [27]Liu DQ,Wang CX,Cui XM.Distribution pattern of aluminum in panax notoginseng,a native medicinal plant adapted to acidic red soils[J].Plant Soil,2018,423(1-2):375-384.
    [28]Wang SY,Yuan SL,Su LT,LüAM,Zhou P,An Y.Aluminum toxicity in alfalfa(Medicago sativa)is alleviated by exogenous foliar IAA inducing reduction of Al accumulation in cell wall[J].Environ Exo Bot,2017,139:1-13.
    [29]Zhu XF,Shi YZ,Lei GJ,Fry SC,Zhang BC,et al.XTH31,encoding an invitro XEH/XET-active enzyme,regulates aluminum sensitivity by modulating in vivo XET action,cell wall xyloglucau content,and aluminum binding capacity in Arabidopsis[J].Plant Cell,2012,24(11):4731-4747.
    [30]Zhu XF,Zhao XS,Wang B,Wu Q,Shen RF.Elevated carbon dioxide alleviates aluminum toxicity by decreasing cell wall hemicellulose in rice(Oryza sativa)[J].Front Physiol,2017,8:1-9.
    [31]Yu Y,Jin CW,Sun CL,Wang JH,Ye YQ,et al.Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat[J].J Hazard Mater,2015,299:280-288.
    [32]Li DQ,Shu ZF,Ye XL,Zhu JJ,Pan JT,et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J].Plant Physiol Bioch,2017,119:265-274.
    [33]Zhu XF,Zhu CQ,Zhao XS,Zheng SJ,Shen RF.Ethylene is involved in root phosphorus remobilization in rice(Oryza sativa)by regulating cell-wall pectin and enhancing phosphate translocation to shoots[J].Ann Bot,2016,118(4):645-653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700