重金属镉添加对珠江河口农村和城市河流湿地土壤氮矿化过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Cd addition on nitrogen mineralization processes of rural and urban river wetland soils in the Pearl River Estuary,China
  • 作者:胡星云 ; 白军红 ; 温晓君 ; 卢琼琼 ; 王伟 ; 王大伟
  • 英文作者:HU Xing-yun;BAI Jun-hong;WEN Xiao-jun;LU Qiong-qiong;WANG Wei;WANG Da-wei;State Key Laboratory of Water Environment Simulation,School of Environment,Beijing Normal University;
  • 关键词:有机氮矿化 ; ; 湿地土壤 ; 脲酶 ; 硝化细菌 ; 珠江河口
  • 英文关键词:Organic nitrogen mineralization;;Cd;;Wetland soils;;Urease enzymes;;nitrifiers;;The Pearl River Estuary
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:水环境模拟国家重点实验室北京师范大学环境学院;
  • 出版日期:2019-03-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:03
  • 基金:北京师范大学学科交叉建设项目~~
  • 语种:中文;
  • 页:140-148
  • 页数:9
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
以珠江河口农村河流湿地和城市河流湿地为研究对象,通过40 d室内培养实验研究了不同浓度的镉添加条件下(A:无添加;B:低浓度,15 mg·kg-1;高浓度,100 mg·kg-1)两类湿地土壤中有机氮的矿化过程,探讨了土壤关键酶、微生物及环境因子对有机氮矿化过程的作用机理。结果表明,不同浓度镉添加条件下两类湿地土壤的矿化速率均表现为初期波动较大而后期趋于稳定的变化趋势,且在40 d培养期内城市河流湿地土壤有机氮的矿化速率总体上大于农村河流湿地土壤;镉添加对培养初期有机氮的矿化具有促进作用,随着培养时间的延长,镉浓度增加抑制了农村河流湿地土壤有机氮的矿化,而低浓度镉却有利于城市河流湿地土壤有机氮的矿化;在培养期内两类湿地土壤有机氮的矿化速率均出现负值。土壤有机氮矿化与脲酶活性具有显著相关性(P<0.05),重金属镉添加抑制了农村河流湿地土壤的脲酶活性,但在培养后期低浓度镉添加却促进了城市河流湿地土壤的脲酶活性。氨氧化古菌(AOA)在不同浓度镉添加下两种湿地土壤的氨氧化过程中都占据很高比例(农村:95.37%~97.86%;城市:52.13%~78.15%),表明其较氨氧化细菌(AOB)更能适应复杂的环境。随着珠江口工业化和城市化的快速发展,当镉污染超出了农村和城市河流湿地土壤的纳污能力时(尤其是农村),会抑制脲酶和硝化微生物活性,进而对有机氮的矿化过程造成不利影响。
        Organic nitrogen mineralization of rural and urban river wetland soils from the Pearl River Estuary under different concentrations of Cd solution(A:control; B:low concentration addition, 15 mg·kg-1; C:high concentration addition, 100 mg·kg-1)were investigated using a 40-day laboratory incubation experiment. Furthermore, the effects of urease enzymes, nitrification microorganisms, and environmental factors on organic nitrogen mineralization were also analyzed. Our results showed that the rates of nitrogen mineralization of rural and urban river wetland soils under different levels of Cd treatments showed large fluctuations at the initial stage but remained stable during the late stage, and the mineralization rates of urban river wetland soils were higher than those in rural river wetland soils over the 40 days of incubation. Cd addition exhibited a stimulating effect on nitrogen mineralization at the early stage. With increasing incubation time,nitrogen mineralization of rural river wetland soils was inhibited with increasing Cd levels, while low level addition of Cd improved the rates of nitrogen mineralization of urban river wetland soils. The mineralization rates of the two types of wetland soils decreased, or even exhibited negative values, during the incubation period, which was mainly associated with an insufficient supply of substrates and with microbial nitrogen fixation and denitrification. Nitrogen mineralization rates were significantly correlated with urease activities(P<0.05). The addition of Cd inhibited urease activity in rural river wetland soils, but low levels of Cd enhanced urease activity of urban river wetland soils during the late stages of incubation. Ammonia oxidizing Archaea(AOA)undertook a large proportion of ammoxidation in rural river wetland soils(95.37%~97.86%)and urban river wetland soils(52.13%~78.15%)under different levels of Cd addition, and these are more adaptable to a pollution-stressed environment than ammonia oxidizing bacteria(AOB). With rapid development of industrialization and urbanization in the Pearl River Estuary, once Cd pollution exceeds the capacities of rural and urban river wetland soils(especially in rural river wetlands), enzyme and microbial activities are inhibited, prohibiting nitrogen mineralization of wetland soils in the long term.
引文
[1] Mistch W J, Gosselin J G. Wetlands[M]. New York:Van Nostrand Reinhold Company Inc, 2000:89-125.
    [2] Koblerg R L, Rouppet B, Westfall D G, et al. Evaluation of an in situ net soil nitrogen mineralization method in dryland agroecosystems[J].Soil Science Society of America Journal, 1997, 61(2):504–508.
    [3]李贵才,韩兴国,黄建辉,等.森林生态系统土壤氮矿化影响因素研究进展[J].生态学报, 2001(7):1187-1195.LI Gui-cai, HAN Xing-guo, HUANG Jian-hui, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems. Acta Ecologica Sinica, 2001(7):1187-1195.
    [4] Li Q S, Wu Z F, Chu B, et al. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China[J]. Environmental Pollution,2007, 149(2):158-164.
    [5]朱永官,陈保冬,林爱军,等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J].环境科学学报, 2005(12):3-7.ZHU Yong-guan, CHEN Bao-dong, LIN Ai-jun, et al. Heavy metal contamination in Pearl River Delta-Status and research priorities[J].Acta Scientiae Circumstantiae, 2005(12):3-7.
    [6]胥正钢,赵运林,周晓梅,等.重金属污染对土壤微生物影响的研究进展[J].江西农业学报, 2014, 26(4):53-55, 60.XU Zheng-gang, ZHAO Yun-qiu, ZHOU Xiao-mei, et al. Research progress in influence of heavy metal pollution on soil microorganisms[J]. Acta Agriculturae Jiangxi, 2014, 26(4):53-55, 60.
    [7] Kene G, Ernst W, Stevep M G. Heavy metals and soil microbes[J]. Soil Biology and Biochemistry, 2009, 41(10):2031-2037.
    [8] Wang C, Lo W, Guo M X, et al. Ecological risk assessment on heavy metals in soils:Use of soil diffuse reflectance mid-infrared Fouriertransform spectroscopy[J]. Scientific Reports, 2017, 7:40709.
    [9]韩文辉,党晋华,赵颖.污灌区重金属和多环芳烃复合污染及其对农田土壤微生物数量的影响[J].生态环境学报, 2016, 25(9):1562-1568.HAN Wen-hui, DANG Jin-hua, ZHAO Ying, et al. Compound pollution of heavy metals and polycyclic aromatic hydrocarbons in sewage irrigation area and its effect on soil microbial quantity[J]. Ecology and Environmental Sciences, 2016, 25(9):1562-1568.
    [10] Gunti?asaaba M E. Effects of moisture and temperature on net soil nitrogen mineralization:A laboratory study[J]. European Journal of Soil Biology, 2012, 48(1):73-80.
    [11]赵牧秋,车志伟,史云峰.外源重金属Cu、Cd对红树林沉积物酶活性的影响[J].环境科学与管理, 2016, 41(7):42-46.ZHAO Mu-qiu, CHE Zhi-wei, SHI Yun-feng. Effects of exogenous heavy metals Cu and Cd on sediment enzyme activities on Magrove forest[J]. Environmental Science and Management, 2016, 41(7):42-46.
    [12] Li Y, Li H G, Liu F C. Pollution in the urban soils of Lianyungang,China, evaluated using a pollution index, mobility of heavy metals,and enzymatic activities[J]. Environmental Monitoring and Assessment, 2017, 189(1):34.
    [13]滕应,黄昌勇,骆永明,等.重金属复合污染下红壤微生物活性及其群落结构的变化[J].土壤学报, 2005, 42(5):819-828.TENG Ying, HUANG Chang-yong, LUO Yong-ming, et al. Changes in microbial activities and its community structure of red earths polluted with mixed heavy metals[J]. Acta Pedologica Sinica, 2005, 42(5):819-828.
    [14] Bedardhaughn A, Matson A L, Pennock D J. Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands[J]. Soil Biology and Biochemistry, 2006, 38(12):3398-3406.
    [15] Sleutel S, Moeskops B, Huybrechts W, et al. Modeling soil moisture effects on net nitrogen mineralization in loamy wetland soils[J]. Wetlands, 2008, 28(3):724-734.
    [16]牟晓杰,孙志高,刘兴土.黄河口典型潮滩湿地土壤净氮矿化与硝化作用[J].中国环境科学, 2015, 35(5):1466-1473.MOU Xiao-jie, SUN Zhi-gao, LIU Xing-tu. Net nitrogen mineralization and nitrification in the tidal marsh soils of the Yellow River Estuary[J]. China Environmental Science, 2015, 35(5):1466-1473.
    [17] Bai J H, Gao H F, Xiao R, et al. A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands:Issues and methods[J]. Clean:Soil, Air, Water, 2012, 40(10):1099-1105.
    [18] Gao H F, Bai J H, Xiao R, et al. Soil net nitrogen mineralization in salt marshes with different flooding periods in the Yellow River Delta,China[J]. Clean:Soil, Air, Water, 2012, 40(10):1111-1117.
    [19]章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2007.ZHANG Jia-en. Experimental research methods and techniques are commonlyused in ecology[M].Beijing:Chemical Industry Press, 2007.
    [20] Schinner F, Oehlinger R, Kandeler E, et al. Methods in soil biology[M]. Berlin:Springer-verlag, 1996.
    [21]朱剑兴,王秋凤,何念鹏,等.内蒙古不同类型草地土壤氮矿化及其温度敏感性[J].生态学报, 2013, 33(19):6320-6327.ZHU Jian-xing, WANG Qiu-feng, HE Nian-peng, et al. Soil nitrogen mineralization and associated temperature sensitivity of different Inner Mongolian grasslands[J]. Acta Ecologica Sinica, 2013, 33(19):6320-6327.
    [22]李生秀,艾绍英,何华.连续淹水培养条件下土壤氮素的矿化过程[J].西北农业大学学报, 1999, 27(1):1-5.LI Sheng-xiu, AI Shao-ying, HE Hua. Soil’s nitrogen mineralization processes under continuously waterlogged incubation conditions[J].Journal of Northwest Agricultural University, 1999, 27(1):1-5.
    [23]艾绍英,李生秀.不同培养条件下土壤及有机物料的氮素矿化过程[J].西北农业学报, 1995, 4(增刊):73-76.AI Shao-ying, LI Sheng-xiu. Nitrogen mineralization of soil and organic materials under different culture conditions[J]. Acta Agriculturae Boreali-occidentalis Sinica, 1995, 4(Suppl):73-76.
    [24] Eriksson P G, Svensson J M, Carrer G M. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy[J]. Estuarine Coastal and Shelf Science, 2003, 58(4):861-871.
    [25]孙志高,刘景双.三江平原典型小叶章湿地土壤氮素净矿化与硝化作用[J].应用生态学报, 2007(8):1771-1777.SUN Zhi-gao, LIU Jing-shuang. Soil nitrogen mineralization and nitrification in typical Calamagrostis Angustifolia wetlands in Sanjiang Plain[J]. Chinese Journal of Applied Ecology, 2007(8):1771-1777.
    [26]金相灿,崔哲,王圣瑞.连续淹水培养条件下沉积物和土壤的氮素矿化过程[J].土壤通报, 2006, 37(5):909-915.JING Xiang-can, CUI Zhe, WANG Sheng-rui. Nitrogen mineralization processes of sediments and soil under continuously waterlogged incubation conditions[J]. Chinese Journal of Soil Science, 2006, 37(5):909-915.
    [27]曹竞雄,韦梦,陈孟次,等.温度对厌氧条件下不同pH水稻土氮素矿化的影响[J].中国生态农业学报, 2014, 22(10):1182-1189.CAO Jing-xiong, WEI Meng, CHEN Meng-ci, et al. Effects of temperature on soil nitrogen mineralization in different pH paddy soils under anaerobic condition[J]. Chinese Journal of Eco-Agriculture, 2014, 22(10):1182-1189.
    [28]李家兵,陈庆燎,张丽烟,等.闽江河口互花米草入侵过程对短叶茳芏湿地土壤氮矿化的影响[J].水土保持学报, 2016, 30(4):242-248.LI Jia-bing, CHEN Qing-liao, ZHANG Li-yan, et al. Effect of Spartina Alterniflora invasion process on spatial and temporal distribution of soil nitrogen mineralization in Cyperus Malaccensis wetland of the Min River estuary[J]. Journal of Soil and Water Conservation, 2016, 30(4):242-248.
    [29] Steven S, Bram M, Willy H, et al. Modeling soil moisture effects on net nitrogen mineralization in loamy wetland soils[J]. Wetlands, 2008,28(3):724-734.
    [30] Ehrenfeld J G, Shen Y U. Patterns of nitrogen mineralization in wetlands of the New Jersey Pinelands along a shallow water table gradient[J]. American Midland Naturalist, 2012, 167(2):322-335.
    [31]杨元根, Paterson E, Campbell C.城市土壤中重金属元素的积累及其微生物效应[J].环境科学, 2001, 22(3):44-48.YANG Yuan-gen, Paterson E, Campbell C. Accumulation of heavy metal elements in urban soils and their microbial effects[J]. Environmental Science, 2001, 22(3):44-48.
    [32] Han X M, Guo W H, Wang M C. Microbial communities in microcosm soils treated with batter waste[J]. Progress in Natural Science:Materials International, 2007, 17(9):29-36.
    [33] Hassen A, Jedidi N, Cherif M, et al. Mineralization of nitrogen in a clayey loamy soil amended with organic wastes enriched with Zn, Cu and Cd[J]. Bioresource Technology, 1998, 64(1):39-45.
    [34] Gieseke A, Purkhold U, Wagner M, et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm[J]. Applied and Environmental Microbiology, 2001, 67(3):1351-1362.
    [35] Wei Q, Shady A A, Willm M H, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J]. Proc Natl Acad Sci USA, 2014, 111(34):12504-12509.
    [36] Kim J G, Jung M Y, Park S J, et al. Cultivation of a highly enriched ammonia-xidizing archaeon of thaumarchaeotal group I. 1b from an agricultural soil[J]. Environmental Microbiology, 2012, 14(6):1528-1543.
    [37]刘晶静,吴伟祥,丁摇颖,等.氨氧化古菌及其在氮循环中的重要作用[J].应用生态学报, 2010, 21(8):2154-2160.LIU Jing-jing, WU Wei-xiang, DING Yao-ying, et al. Ammonia oxidizing archaea their important roles in nitrogen biogeochemical cycling:A review[J]. Chinese Journal of Applied Ecology, 2010, 21(8):2154-2160.